T-branes at the limits of geometry

  • Lara B. Anderson
  • Jonathan J. Heckman
  • Sheldon Katz
  • Laura P. Schaposnik
Open Access
Regular Article - Theoretical Physics


Singular limits of 6D F-theory compactifications are often captured by T-branes, namely a non-abelian configuration of intersecting 7-branes with a nilpotent matrix of normal deformations. The long distance approximation of such 7-branes is a Hitchin-like system in which simple and irregular poles emerge at marked points of the geometry. When multiple matter fields localize at the same point in the geometry, the associated Higgs field can exhibit irregular behavior, namely poles of order greater than one. This provides a geometric mechanism to engineer wild Higgs bundles. Physical constraints such as anomaly cancellation and consistent coupling to gravity also limit the order of such poles. Using this geometric formulation, we unify seemingly different wild Hitchin systems in a single framework in which orders of poles become adjustable parameters dictated by tuning gauge singlet moduli of the F-theory model.


F-Theory Differential and Algebraic Geometry Superstring Vacua 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    I. Bena, J. Blabäck, R. Minasian and R. Savelli, There and back again: a T-brane’s tale, JHEP 11 (2016) 179 [arXiv:1608.01221] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa couplings, JHEP 05 (2011) 023 [arXiv:1101.2455] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    A. Font, L.E. Ibáñez, F. Marchesano and D. Regalado, Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) unification, JHEP 03 (2013) 140 [Erratum ibid. 07 (2013) 036] [arXiv:1211.6529] [INSPIRE].
  11. [11]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8 in F-theory, JHEP 04 (2015) 179 [arXiv:1503.02683] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Marchesano and S. Schwieger, T-branes and α -corrections, JHEP 11 (2016) 123 [arXiv:1609.02799] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    J.M. Ashfaque, Monodromic T-branes and the SO(10)GUT, arXiv:1701.05896 [INSPIRE].
  16. [16]
    J.J. Heckman and C. Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452 [INSPIRE].
  17. [17]
    J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    M. Wijnholt, Higgs bundles and string phenomenology, Proc. Symp. Pure Math. 85 (2012) 275 [arXiv:1201.2520] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  21. [21]
    N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [INSPIRE].CrossRefMATHGoogle Scholar
  22. [22]
    D.-E. Diaconescu, R. Donagi, R. Dijkgraaf, C. Hofman and T. Pantev, Geometric transitions and integrable systems, Nucl. Phys. B 752 (2006) 329 [hep-th/0506196] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    D.-E. Diaconescu, R. Donagi and T. Pantev, Intermediate Jacobians and ADE Hitchin systems, hep-th/0607159 [INSPIRE].
  24. [24]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    N. Hitchin, Lie groups and Teichmüller theory, Topology 31 (1992) 449.CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    R. Donagi, L. Ein and R. Lazarsfeld, Nilpotent cones and sheaves on K3 surfaces, Contemp. Math. 207 (1997) 51.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories, JHEP 07 (2013) 017 [arXiv:1304.2704] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    L.B. Anderson, A. Constantin, S.-J. Lee and A. Lukas, Hypercharge flux in heterotic compactifications, Phys. Rev. D 91 (2015) 046008 [arXiv:1411.0034] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    P.S. Aspinwall and R.Y. Donagi, The heterotic string, the tangent bundle and derived categories, Adv. Theor. Math. Phys. 2 (1998) 1041 [hep-th/9806094] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  36. [36]
    J.J. Heckman, More on the matter of 6D SCFTs, Phys. Lett. B 747 (2015) 73 [arXiv:1408.0006] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG flows and nilpotent hierarchies, JHEP 07 (2016) 082 [arXiv:1601.04078] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, anomalies and moduli spaces in 6D SCFTs, arXiv:1612.06399 [INSPIRE].
  39. [39]
    D. Baraglia, M. Kamgarpour and R. Varma, Complete integrability of the parahoric Hitchin system, arXiv:1608.05454.
  40. [40]
    D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York U.S.A., (1993).MATHGoogle Scholar
  41. [41]
    S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].
  42. [42]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  43. [43]
    P. Boalch, Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild non-Abelian Hodge theory, hyper-Kähler manifolds, isomonodromic deformations, Painlevé equations and relations to Lie theory, thése d’habilitation, Université Paris XI, Paris France, (2013) [arXiv:1305.6593] [INSPIRE].
  44. [44]
    E. Witten, Gauge theory and wild ramification, arXiv:0710.0631 [INSPIRE].
  45. [45]
    M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformations of linear differential equations with rational coefficients I, Physica D 2 (1981) 306.ADSMATHMathSciNetGoogle Scholar
  46. [46]
    N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys. B 224 (1983) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
  49. [49]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [INSPIRE].
  50. [50]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  51. [51]
    J. Fisher and S. Rayan, Hyperpolygons and Hitchin systems, Int. Math. Res. Not. 2016 (2016) 1839 [arXiv:1410.6467] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  52. [52]
    T. Hausel, M. Mereb and M. Lennox Wong, Arithmetic and representation theory of wild character varieties, arXiv:1604.03382.
  53. [53]
    S. Rayan, The quiver at the bottom of the twisted nilpotent cone on P 1, Eur. J. Math. (2016) [arXiv:1609.08226] [INSPIRE].
  54. [54]
    L. Godinho and A. Mandini, Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles, arXiv:1101.3241.
  55. [55]
    R. Hartshorne, Algebraic geometry, Graduate texts in mathematics, Springer, New York U.S.A., (1977).Google Scholar
  56. [56]
    P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001) 137.CrossRefMATHMathSciNetGoogle Scholar
  57. [57]
    O. Biquard and P. Boalch, Wild non-Abelian Hodge theory on curves, Compos. Math. 140 (2004) 179 [math.DG/0111098].
  58. [58]
    A. Beauville, Jacobiennes des courbes spectral et systèmes Hamiltoniens complètement intégrables (in French), Acta Math. 164 (1990) 211.CrossRefMATHMathSciNetGoogle Scholar
  59. [59]
    L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    S. Bradlow and L. Schaposnik, Higgs bundles and exceptional isogenies, Res. Math. Sci. 3 (2016) 14 [arXiv:1508.02650].CrossRefMATHMathSciNetGoogle Scholar
  61. [61]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds — II, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  62. [62]
    L.P. Schaposnik, Spectral data for G-Higgs bundles, arXiv:1301.1981.
  63. [63]
    N.J. Hitchin, Langlands duality and G 2 spectral curves, math/0611524 [INSPIRE].
  64. [64]
    N.J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  65. [65]
    P.P. Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math. 179 (2014) 301 [arXiv:1111.6228].CrossRefMATHMathSciNetGoogle Scholar
  66. [66]
    P. Boalch, Hyper-Kähler manifolds and non-Abelian Hodge theory of (irregular) curves, arXiv:1203.6607.
  67. [67]
    J. Martinet and J.P. Ramis, Elementary acceleration and multisummability I, Ann. Inst. H. Poincaré Phys. Théor. 54 (1991) 331.MATHMathSciNetGoogle Scholar
  68. [68]
    R. Donagi and E. Markman, Spectral curves, algebraically completely integrable Hamiltonian systems and moduli of bundles, alg-geom/9507017 [INSPIRE].
  69. [69]
    F. Bottacin, Symplectic geometry on moduli spaces of stable pairs, Ann. Sci. École Norm. Sup. 28 (1995) 391.CrossRefMATHMathSciNetGoogle Scholar
  70. [70]
    H. Clemens, Double solids, Adv. Math. 47 (1983) 107 [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  71. [71]
    R. Friedman, Simultaneous resolution of threefold double points, Math. Ann. 274 (1986) 671.ADSCrossRefMATHMathSciNetGoogle Scholar
  72. [72]
    B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the unification of string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Lara B. Anderson
    • 1
  • Jonathan J. Heckman
    • 2
  • Sheldon Katz
    • 3
  • Laura P. Schaposnik
    • 4
  1. 1.Physics DepartmentRobeson Hall, Virginia TechBlacksburgU.S.A.
  2. 2.Department of PhysicsUniversity of North CarolinaChapel HillU.S.A.
  3. 3.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.
  4. 4.Department of MathematicsUniversity of Illinois at ChicagoChicagoU.S.A.

Personalised recommendations