Advertisement

T-branes at the limits of geometry

  • Lara B. Anderson
  • Jonathan J. Heckman
  • Sheldon Katz
  • Laura P. Schaposnik
Open Access
Regular Article - Theoretical Physics

Abstract

Singular limits of 6D F-theory compactifications are often captured by T-branes, namely a non-abelian configuration of intersecting 7-branes with a nilpotent matrix of normal deformations. The long distance approximation of such 7-branes is a Hitchin-like system in which simple and irregular poles emerge at marked points of the geometry. When multiple matter fields localize at the same point in the geometry, the associated Higgs field can exhibit irregular behavior, namely poles of order greater than one. This provides a geometric mechanism to engineer wild Higgs bundles. Physical constraints such as anomaly cancellation and consistent coupling to gravity also limit the order of such poles. Using this geometric formulation, we unify seemingly different wild Hitchin systems in a single framework in which orders of poles become adjustable parameters dictated by tuning gauge singlet moduli of the F-theory model.

Keywords

F-Theory Differential and Algebraic Geometry Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    I. Bena, J. Blabäck, R. Minasian and R. Savelli, There and back again: a T-brane’s tale, JHEP 11 (2016) 179 [arXiv:1608.01221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa couplings, JHEP 05 (2011) 023 [arXiv:1101.2455] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    A. Font, L.E. Ibáñez, F. Marchesano and D. Regalado, Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) unification, JHEP 03 (2013) 140 [Erratum ibid. 07 (2013) 036] [arXiv:1211.6529] [INSPIRE].
  11. [11]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8 in F-theory, JHEP 04 (2015) 179 [arXiv:1503.02683] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Marchesano and S. Schwieger, T-branes and α -corrections, JHEP 11 (2016) 123 [arXiv:1609.02799] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.M. Ashfaque, Monodromic T-branes and the SO(10)GUT, arXiv:1701.05896 [INSPIRE].
  16. [16]
    J.J. Heckman and C. Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452 [INSPIRE].
  17. [17]
    J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Wijnholt, Higgs bundles and string phenomenology, Proc. Symp. Pure Math. 85 (2012) 275 [arXiv:1201.2520] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [INSPIRE].CrossRefMATHGoogle Scholar
  22. [22]
    D.-E. Diaconescu, R. Donagi, R. Dijkgraaf, C. Hofman and T. Pantev, Geometric transitions and integrable systems, Nucl. Phys. B 752 (2006) 329 [hep-th/0506196] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    D.-E. Diaconescu, R. Donagi and T. Pantev, Intermediate Jacobians and ADE Hitchin systems, hep-th/0607159 [INSPIRE].
  24. [24]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    N. Hitchin, Lie groups and Teichmüller theory, Topology 31 (1992) 449.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    R. Donagi, L. Ein and R. Lazarsfeld, Nilpotent cones and sheaves on K3 surfaces, Contemp. Math. 207 (1997) 51.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories, JHEP 07 (2013) 017 [arXiv:1304.2704] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    L.B. Anderson, A. Constantin, S.-J. Lee and A. Lukas, Hypercharge flux in heterotic compactifications, Phys. Rev. D 91 (2015) 046008 [arXiv:1411.0034] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    P.S. Aspinwall and R.Y. Donagi, The heterotic string, the tangent bundle and derived categories, Adv. Theor. Math. Phys. 2 (1998) 1041 [hep-th/9806094] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    J.J. Heckman, More on the matter of 6D SCFTs, Phys. Lett. B 747 (2015) 73 [arXiv:1408.0006] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG flows and nilpotent hierarchies, JHEP 07 (2016) 082 [arXiv:1601.04078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, anomalies and moduli spaces in 6D SCFTs, arXiv:1612.06399 [INSPIRE].
  39. [39]
    D. Baraglia, M. Kamgarpour and R. Varma, Complete integrability of the parahoric Hitchin system, arXiv:1608.05454.
  40. [40]
    D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York U.S.A., (1993).MATHGoogle Scholar
  41. [41]
    S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].
  42. [42]
    M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    P. Boalch, Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild non-Abelian Hodge theory, hyper-Kähler manifolds, isomonodromic deformations, Painlevé equations and relations to Lie theory, thése d’habilitation, Université Paris XI, Paris France, (2013) [arXiv:1305.6593] [INSPIRE].
  44. [44]
    E. Witten, Gauge theory and wild ramification, arXiv:0710.0631 [INSPIRE].
  45. [45]
    M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformations of linear differential equations with rational coefficients I, Physica D 2 (1981) 306.ADSMathSciNetMATHGoogle Scholar
  46. [46]
    N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys. B 224 (1983) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
  49. [49]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [INSPIRE].
  50. [50]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    J. Fisher and S. Rayan, Hyperpolygons and Hitchin systems, Int. Math. Res. Not. 2016 (2016) 1839 [arXiv:1410.6467] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    T. Hausel, M. Mereb and M. Lennox Wong, Arithmetic and representation theory of wild character varieties, arXiv:1604.03382.
  53. [53]
    S. Rayan, The quiver at the bottom of the twisted nilpotent cone on P 1, Eur. J. Math. (2016) [arXiv:1609.08226] [INSPIRE].
  54. [54]
    L. Godinho and A. Mandini, Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles, arXiv:1101.3241.
  55. [55]
    R. Hartshorne, Algebraic geometry, Graduate texts in mathematics, Springer, New York U.S.A., (1977).Google Scholar
  56. [56]
    P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001) 137.MathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    O. Biquard and P. Boalch, Wild non-Abelian Hodge theory on curves, Compos. Math. 140 (2004) 179 [math.DG/0111098].
  58. [58]
    A. Beauville, Jacobiennes des courbes spectral et systèmes Hamiltoniens complètement intégrables (in French), Acta Math. 164 (1990) 211.MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    S. Bradlow and L. Schaposnik, Higgs bundles and exceptional isogenies, Res. Math. Sci. 3 (2016) 14 [arXiv:1508.02650].MathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds — II, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    L.P. Schaposnik, Spectral data for G-Higgs bundles, arXiv:1301.1981.
  63. [63]
    N.J. Hitchin, Langlands duality and G 2 spectral curves, math/0611524 [INSPIRE].
  64. [64]
    N.J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    P.P. Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math. 179 (2014) 301 [arXiv:1111.6228].MathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    P. Boalch, Hyper-Kähler manifolds and non-Abelian Hodge theory of (irregular) curves, arXiv:1203.6607.
  67. [67]
    J. Martinet and J.P. Ramis, Elementary acceleration and multisummability I, Ann. Inst. H. Poincaré Phys. Théor. 54 (1991) 331.MathSciNetMATHGoogle Scholar
  68. [68]
    R. Donagi and E. Markman, Spectral curves, algebraically completely integrable Hamiltonian systems and moduli of bundles, alg-geom/9507017 [INSPIRE].
  69. [69]
    F. Bottacin, Symplectic geometry on moduli spaces of stable pairs, Ann. Sci. École Norm. Sup. 28 (1995) 391.MathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    H. Clemens, Double solids, Adv. Math. 47 (1983) 107 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    R. Friedman, Simultaneous resolution of threefold double points, Math. Ann. 274 (1986) 671.ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the unification of string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Lara B. Anderson
    • 1
  • Jonathan J. Heckman
    • 2
  • Sheldon Katz
    • 3
  • Laura P. Schaposnik
    • 4
  1. 1.Physics DepartmentRobeson Hall, Virginia TechBlacksburgU.S.A.
  2. 2.Department of PhysicsUniversity of North CarolinaChapel HillU.S.A.
  3. 3.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.
  4. 4.Department of MathematicsUniversity of Illinois at ChicagoChicagoU.S.A.

Personalised recommendations