Abstract
Singular limits of 6D F-theory compactifications are often captured by T-branes, namely a non-abelian configuration of intersecting 7-branes with a nilpotent matrix of normal deformations. The long distance approximation of such 7-branes is a Hitchin-like system in which simple and irregular poles emerge at marked points of the geometry. When multiple matter fields localize at the same point in the geometry, the associated Higgs field can exhibit irregular behavior, namely poles of order greater than one. This provides a geometric mechanism to engineer wild Higgs bundles. Physical constraints such as anomaly cancellation and consistent coupling to gravity also limit the order of such poles. Using this geometric formulation, we unify seemingly different wild Hitchin systems in a single framework in which orders of poles become adjustable parameters dictated by tuning gauge singlet moduli of the F-theory model.
Article PDF
References
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].
S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].
L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].
A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].
A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].
A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].
I. Bena, J. Blabäck, R. Minasian and R. Savelli, There and back again: a T-brane’s tale, JHEP 11 (2016) 179 [arXiv:1608.01221] [INSPIRE].
C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa couplings, JHEP 05 (2011) 023 [arXiv:1101.2455] [INSPIRE].
A. Font, L.E. Ibáñez, F. Marchesano and D. Regalado, Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) unification, JHEP 03 (2013) 140 [Erratum ibid. 07 (2013) 036] [arXiv:1211.6529] [INSPIRE].
A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP 11 (2013) 125 [arXiv:1307.8089] [INSPIRE].
F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8 in F-theory, JHEP 04 (2015) 179 [arXiv:1503.02683] [INSPIRE].
M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].
F. Marchesano and S. Schwieger, T-branes and α ′ -corrections, JHEP 11 (2016) 123 [arXiv:1609.02799] [INSPIRE].
J.M. Ashfaque, Monodromic T-branes and the SO(10)GUT, arXiv:1701.05896 [INSPIRE].
J.J. Heckman and C. Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452 [INSPIRE].
J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].
T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].
A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].
M. Wijnholt, Higgs bundles and string phenomenology, Proc. Symp. Pure Math. 85 (2012) 275 [arXiv:1201.2520] [INSPIRE].
N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [INSPIRE].
D.-E. Diaconescu, R. Donagi, R. Dijkgraaf, C. Hofman and T. Pantev, Geometric transitions and integrable systems, Nucl. Phys. B 752 (2006) 329 [hep-th/0506196] [INSPIRE].
D.-E. Diaconescu, R. Donagi and T. Pantev, Intermediate Jacobians and ADE Hitchin systems, hep-th/0607159 [INSPIRE].
C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].
N. Hitchin, Lie groups and Teichmüller theory, Topology 31 (1992) 449.
S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [INSPIRE].
R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].
H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].
R. Donagi, L. Ein and R. Lazarsfeld, Nilpotent cones and sheaves on K3 surfaces, Contemp. Math. 207 (1997) 51.
L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories, JHEP 07 (2013) 017 [arXiv:1304.2704] [INSPIRE].
L.B. Anderson, A. Constantin, S.-J. Lee and A. Lukas, Hypercharge flux in heterotic compactifications, Phys. Rev. D 91 (2015) 046008 [arXiv:1411.0034] [INSPIRE].
M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].
P.S. Aspinwall and R.Y. Donagi, The heterotic string, the tangent bundle and derived categories, Adv. Theor. Math. Phys. 2 (1998) 1041 [hep-th/9806094] [INSPIRE].
M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].
J.J. Heckman, More on the matter of 6D SCFTs, Phys. Lett. B 747 (2015) 73 [arXiv:1408.0006] [INSPIRE].
J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG flows and nilpotent hierarchies, JHEP 07 (2016) 082 [arXiv:1601.04078] [INSPIRE].
N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, anomalies and moduli spaces in 6D SCFTs, arXiv:1612.06399 [INSPIRE].
D. Baraglia, M. Kamgarpour and R. Varma, Complete integrability of the parahoric Hitchin system, arXiv:1608.05454.
D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York U.S.A., (1993).
S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].
M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].
P. Boalch, Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild non-Abelian Hodge theory, hyper-Kähler manifolds, isomonodromic deformations, Painlevé equations and relations to Lie theory, thése d’habilitation, Université Paris XI, Paris France, (2013) [arXiv:1305.6593] [INSPIRE].
E. Witten, Gauge theory and wild ramification, arXiv:0710.0631 [INSPIRE].
M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformations of linear differential equations with rational coefficients I, Physica D 2 (1981) 306.
N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys. B 224 (1983) 159 [INSPIRE].
N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].
R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [INSPIRE].
R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].
J. Fisher and S. Rayan, Hyperpolygons and Hitchin systems, Int. Math. Res. Not. 2016 (2016) 1839 [arXiv:1410.6467] [INSPIRE].
T. Hausel, M. Mereb and M. Lennox Wong, Arithmetic and representation theory of wild character varieties, arXiv:1604.03382.
S. Rayan, The quiver at the bottom of the twisted nilpotent cone on P 1, Eur. J. Math. (2016) [arXiv:1609.08226] [INSPIRE].
L. Godinho and A. Mandini, Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles, arXiv:1101.3241.
R. Hartshorne, Algebraic geometry, Graduate texts in mathematics, Springer, New York U.S.A., (1977).
P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001) 137.
O. Biquard and P. Boalch, Wild non-Abelian Hodge theory on curves, Compos. Math. 140 (2004) 179 [math.DG/0111098].
A. Beauville, Jacobiennes des courbes spectral et systèmes Hamiltoniens complètement intégrables (in French), Acta Math. 164 (1990) 211.
L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].
S. Bradlow and L. Schaposnik, Higgs bundles and exceptional isogenies, Res. Math. Sci. 3 (2016) 14 [arXiv:1508.02650].
D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds — II, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
L.P. Schaposnik, Spectral data for G-Higgs bundles, arXiv:1301.1981.
N.J. Hitchin, Langlands duality and G 2 spectral curves, math/0611524 [INSPIRE].
N.J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91 [INSPIRE].
P.P. Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math. 179 (2014) 301 [arXiv:1111.6228].
P. Boalch, Hyper-Kähler manifolds and non-Abelian Hodge theory of (irregular) curves, arXiv:1203.6607.
J. Martinet and J.P. Ramis, Elementary acceleration and multisummability I, Ann. Inst. H. Poincaré Phys. Théor. 54 (1991) 331.
R. Donagi and E. Markman, Spectral curves, algebraically completely integrable Hamiltonian systems and moduli of bundles, alg-geom/9507017 [INSPIRE].
F. Bottacin, Symplectic geometry on moduli spaces of stable pairs, Ann. Sci. École Norm. Sup. 28 (1995) 391.
H. Clemens, Double solids, Adv. Math. 47 (1983) 107 [INSPIRE].
R. Friedman, Simultaneous resolution of threefold double points, Math. Ann. 274 (1986) 671.
B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the unification of string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1702.06137
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Anderson, L.B., Heckman, J.J., Katz, S. et al. T-branes at the limits of geometry. J. High Energ. Phys. 2017, 58 (2017). https://doi.org/10.1007/JHEP10(2017)058
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2017)058