Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
On the Casimir scaling violation in the cusp anomalous dimension at small angle
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Matter dependence of the four-loop QCD cusp anomalous dimension: from small angles to all angles

28 May 2019

Robin Brüser, Andrey Grozin, … Maximilian Stahlhofen

Four-loop QCD cusp anomalous dimension at small angle

15 November 2022

Andrey G. Grozin, Roman N. Lee & Andrey F. Pikelner

Four-loop cusp anomalous dimension in QED

14 June 2018

Andrey Grozin

The full four-loop cusp anomalous dimension in N$$ \mathcal{N} $$ = 4 super Yang-Mills and QCD

03 April 2020

Johannes M. Henn, Gregory P. Korchemsky & Bernhard Mistlberger

Wilson loops in terms of color invariants

29 May 2019

Bartomeu Fiol, Jairo Martínez-Montoya & Alan Rios Fukelman

Double scaling limit of N $$ \mathcal{N} $$ = 2 chiral correlators with Maldacena-Wilson loop

14 February 2019

Matteo Beccaria

The three-loop anomalous dimension and the four-loop β-function for N $$ \mathcal{N} $$ = 1 SQED regularized by higher derivatives

19 April 2022

I. E. Shirokov & K. V. Stepanyantz

The Bremsstrahlung function of N $$ \mathcal{N} $$ = 2 SCQCD

21 March 2019

Carolina Gomez, Andrea Mauri & Silvia Penati

Non-perturbative renormalization scheme for the C P -odd three-gluon operator

14 September 2020

Vincenzo Cirigliano, Emanuele Mereghetti & Peter Stoffer

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 09 October 2017

On the Casimir scaling violation in the cusp anomalous dimension at small angle

  • Andrey Grozin1,2,3,
  • Johannes Henn3 &
  • Maximilian Stahlhofen3 

Journal of High Energy Physics volume 2017, Article number: 52 (2017) Cite this article

  • 267 Accesses

  • 34 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to \( \mathcal{O}\left({\phi}^4\right) \). One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A.F. Falk, H. Georgi, B. Grinstein and M.B. Wise, Heavy meson form-factors from QCD, Nucl. Phys. B 343 (1990) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, arXiv:1612.07233 [INSPIRE].

  4. A. Czarnecki, K. Melnikov and N. Uraltsev, Non-Abelian dipole radiation and the heavy quark expansion, Phys. Rev. Lett. 80 (1998) 3189 [hep-ph/9708372] [INSPIRE].

  5. D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three loop cusp anomalous dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

  11. C. Anzai, Y. Kiyo and Y. Sumino, Violation of Casimir scaling for static QCD potential at three-loop order, Nucl. Phys. B 838 (2010) 28 [Erratum ibid. B 890 (2015) 569] [arXiv:1004.1562] [INSPIRE].

  12. R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Analytic three-loop static potential, Phys. Rev. D 94 (2016) 054029 [arXiv:1608.02603] [INSPIRE].

    ADS  Google Scholar 

  13. R.H. Boels, T. Huber and G. Yang, The four-loop non-planar cusp anomalous dimension in N = 4 SYM, arXiv:1705.03444 [INSPIRE].

  14. C. Anzai, Y. Kiyo and Y. Sumino, Static QCD potential at three-loop order, Phys. Rev. Lett. 104 (2010) 112003 [arXiv:0911.4335] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop static potential, Phys. Rev. Lett. 104 (2010) 112002 [arXiv:0911.4742] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-loop non-singlet splitting functions in the planar limit and beyond, arXiv:1707.08315 [INSPIRE].

  17. K. Melnikov and T. van Ritbergen, The three loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131] [INSPIRE].

  18. K.G. Chetyrkin and A.G. Grozin, Three loop anomalous dimension of the heavy light quark current in HQET, Nucl. Phys. B 666 (2003) 289 [hep-ph/0303113] [INSPIRE].

  19. J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in N = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147 [arXiv:1304.6418] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. J.G.M. Gatheral, Exponentiation of eikonal cross-sections in non-Abelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Frenkel and J.C. Taylor, Non-Abelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  22. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, U.S.A., (1995) [INSPIRE].

    Google Scholar 

  23. K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  24. A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  26. R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

  27. E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. V.A. Smirnov, Feynman integral calculus, Springer, Germany, (2006) [INSPIRE].

    Google Scholar 

  29. A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. A.I. Davydychev and A.G. Grozin, HQET quark-gluon vertex at one loop, Eur. Phys. J. C 20 (2001) 333 [hep-ph/0103078] [INSPIRE].

  31. A.G. Grozin, Matching heavy-quark fields in QCD and HQET at three loops, Phys. Lett. B 692 (2010) 161 [arXiv:1004.2662] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Budker Institute of Nuclear Physics SB RAS, Lavrentyev st. 11, Novosibirsk, 630090, Russia

    Andrey Grozin

  2. Novosibirsk State University, Pirogov st. 2, Novosibirsk, 630090, Russia

    Andrey Grozin

  3. PRISMA Cluster of Excellence, Johannes Gutenberg University, Staudingerweg 9, 55128, Mainz, Germany

    Andrey Grozin, Johannes Henn & Maximilian Stahlhofen

Authors
  1. Andrey Grozin
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Johannes Henn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Maximilian Stahlhofen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Maximilian Stahlhofen.

Additional information

ArXiv ePrint: 1708.01221

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

HQET Master Integrals. The file contains the HQET master integrals according to the definition in eq.(2.14) and their results written as a list of replacement rules in Mathematica format. (TXT 24 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grozin, A., Henn, J. & Stahlhofen, M. On the Casimir scaling violation in the cusp anomalous dimension at small angle. J. High Energ. Phys. 2017, 52 (2017). https://doi.org/10.1007/JHEP10(2017)052

Download citation

  • Received: 15 August 2017

  • Revised: 17 September 2017

  • Accepted: 20 September 2017

  • Published: 09 October 2017

  • DOI: https://doi.org/10.1007/JHEP10(2017)052

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Effective Field Theories
  • Heavy Quark Physics
  • Perturbative QCD
  • Resummation
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.