D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 1, Phys. Rev.
D 8 (1973) 3633 [INSPIRE].
H. Georgi and H.D. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions, Phys. Rev.
D 9 (1974) 416 [INSPIRE].
ADS
Google Scholar
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys.
B 126 (1977) 298 [INSPIRE].
ADS
Article
Google Scholar
K.J. Kim and K. Schilcher, Scaling violation in the infinite momentum frame, Phys. Rev.
D 17 (1978) 2800 [INSPIRE].
ADS
Google Scholar
E.G. Floratos, D.A. Ross and C.T. Sachrajda, Higher order effects in asymptotically free gauge theories: the anomalous dimensions of Wilson operators, Nucl. Phys.
B 129 (1977) 66 [Erratum ibid.
B 139 (1978) 545] [INSPIRE].
E.G. Floratos, D.A. Ross and C.T. Sachrajda, Higher order effects in asymptotically free gauge theories: 2. Flavor singlet Wilson operators and coefficient functions, Nucl. Phys.
B 152 (1979) 493 [INSPIRE].
A. Gonzalez-Arroyo, C. Lopez and F.J. Yndurain, Second order contributions to the structure functions in deep inelastic scattering. 1. Theoretical calculations, Nucl. Phys.
B 153 (1979) 161 [INSPIRE].
A. Gonzalez-Arroyo and C. Lopez, Second order contributions to the structure functions in deep inelastic scattering. 3. The singlet case, Nucl. Phys.
B 166 (1980) 429 [INSPIRE].
G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys.
B 175 (1980) 27 [INSPIRE].
ADS
Article
Google Scholar
W. Furmanski and R. Petronzio, Singlet parton densities beyond leading order, Phys. Lett.
97B (1980) 437 [INSPIRE].
ADS
Article
Google Scholar
E.G. Floratos, C. Kounnas and R. Lacaze, Higher order QCD effects in inclusive annihilation and deep inelastic scattering, Nucl. Phys.
B 192 (1981) 417 [INSPIRE].
ADS
Article
Google Scholar
R. Hamberg and W.L. van Neerven, The correct renormalization of the gluon operator in a covariant gauge, Nucl. Phys.
B 379 (1992) 143 [INSPIRE].
ADS
Article
Google Scholar
R.K. Ellis and W. Vogelsang, The evolution of parton distributions beyond leading order: the singlet case, hep-ph/9602356 [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys.
B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys.
B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wissbrock, The O(α
3
s
) massive operator matrix elements of O(n
f
) for the structure function F
2(x, Q
2) and transversity, Nucl. Phys.
B 844 (2011) 26 [arXiv:1008.3347] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Ablinger et al., The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F
2(x, Q
2) and transversity, Nucl. Phys.
B 886 (2014) 733 [arXiv:1406.4654] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function F
2(x, Q
2) and the anomalous dimension, Nucl. Phys.
B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].
ADS
MATH
Google Scholar
J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The three-loop splitting functions
\( {P}_{qg}^{(2)}\; and\;{P}_{gg}^{\left(2,{N}_F\right)} \), Nucl. Phys.
B 922 (2017) 1 [arXiv:1705.01508] [INSPIRE].
ADS
Article
MATH
Google Scholar
A. Accardi et al., A critical appraisal and evaluation of modern PDFs, Eur. Phys. J.
C 76 (2016) 471 [arXiv:1603.08906] [INSPIRE].
ADS
Article
Google Scholar
C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett.
114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
ADS
Article
Google Scholar
J.A.M. Vermaseren, A. Vogt and S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys.
B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, Third-order QCD corrections to the charged-current structure function F
3, Nucl. Phys.
B 813 (2009) 220 [arXiv:0812.4168] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Davies, A. Vogt, S. Moch and J.A.M. Vermaseren, Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD, PoS(DIS2016)059 [arXiv:1606.08907] [INSPIRE].
J. Davies, S. Moch, J.A.M. Vermaseren and A. Vogt, Third-order QCD corrections to charged-current and polarized structure function in DIS, to appear.
F.A. Dreyer and A. Karlberg, Vector-boson fusion Higgs production at three loops in QCD, Phys. Rev. Lett.
117 (2016) 072001 [arXiv:1606.00840] [INSPIRE].
ADS
Article
Google Scholar
P.A. Baikov and K.G. Chetyrkin, New four loop results in QCD, Nucl. Phys. Proc. Suppl.
160 (2006) 76 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
V.N. Velizhanin, Four loop anomalous dimension of the second moment of the non-singlet twist-2 operator in QCD, Nucl. Phys.
B 860 (2012) 288 [arXiv:1112.3954] [INSPIRE].
ADS
Article
MATH
Google Scholar
V.N. Velizhanin, Four loop anomalous dimension of the third and fourth moments of the non-singlet twist-2 operator in QCD, arXiv:1411.1331 [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Massless propagators, R(s) and multiloop QCD, Nucl. Part. Phys. Proc.
261-262 (2015) 3 [arXiv:1501.06739] [INSPIRE].
B. Ruijl, T. Ueda, J.A.M. Vermaseren, J. Davies and A. Vogt, First Forcer results on deep-inelastic scattering and related quantities, PoS(LL2016)071 [arXiv:1605.08408] [INSPIRE].
J. Davies, A. Vogt, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Large-N
f
contributions to the four-loop splitting functions in QCD, Nucl. Phys.
B 915 (2017) 335 [arXiv:1610.07477] [INSPIRE].
ADS
Article
MATH
Google Scholar
B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, arXiv:1704.06650 [INSPIRE].
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.
184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
M. Tentyukov and J.A.M. Vermaseren, The multithreaded version of FORM, Comput. Phys. Commun.
181 (2010) 1419 [hep-ph/0702279] [INSPIRE].
J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys.
A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE].
J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev.
D 60 (1999) 014018 [hep-ph/9810241] [INSPIRE].
A.K. Lenstra, H.W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann.
261 (1982) 515.
MathSciNet
Article
MATH
Google Scholar
K. Matthews, Solving ax = b using the Hermite normal form, unpublished.
J.H. Silverman, The Xedni calculus and the elliptic curve discrete logarithm problem, Designs, Codes Crypt.
20 (2000) 5.
CALC webpage, http://www.numbertheory.org/calc/krm_calc.html.
V.N. Velizhanin, Three loop anomalous dimension of the non-singlet transversity operator in QCD, Nucl. Phys.
B 864 (2012) 113 [arXiv:1203.1022] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: the helicity-dependent case, Nucl. Phys.
B 889 (2014) 351 [arXiv:1409.5131] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett.
A 4 (1989) 1257 [INSPIRE].
ADS
Article
Google Scholar
J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form factor and cusp anomalous dimension in QCD, JHEP
05 (2016) 066 [arXiv:1604.03126] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Henn, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and R.N. Lee, Four-loop photon quark form factor and cusp anomalous dimension in the large-N
c
limit of QCD, JHEP
03 (2017) 139 [arXiv:1612.04389] [INSPIRE].
ADS
Article
Google Scholar
W.L. van Neerven and A. Vogt, NNLO evolution of deep inelastic structure functions: the nonsinglet case, Nucl. Phys.
B 568 (2000) 263 [hep-ph/9907472] [INSPIRE].
W.L. van Neerven and A. Vogt, NNLO evolution of deep inelastic structure functions: the singlet case, Nucl. Phys.
B 588 (2000) 345 [hep-ph/0006154] [INSPIRE].
W.L. van Neerven and A. Vogt, Improved approximations for the three loop splitting functions in QCD, Phys. Lett.
B 490 (2000) 111 [hep-ph/0007362] [INSPIRE].
J. Kalinowski, K. Konishi, P.N. Scharbach and T.R. Taylor, Resolving QCD jets beyond leading order: quark decay probabilities, Nucl. Phys.
B 181 (1981) 253 [INSPIRE].
ADS
Article
Google Scholar
J. Kalinowski, K. Konishi and T.R. Taylor, Jet calculus beyond leading logarithms, Nucl. Phys.
B 181 (1981) 221 [INSPIRE].
ADS
Article
Google Scholar
T. Munehisa, H. Okada, K. Kudoh and K. Kitani, Two loop anomalous dimensions of timelike cut vertices and scaling violation of fragmentation functions in QCD, Prog. Theor. Phys.
67 (1982) 609 [INSPIRE].
ADS
Article
Google Scholar
A. Mitov and S.-O. Moch, QCD corrections to semi-inclusive hadron production in electron-positron annihilation at two loops, Nucl. Phys.
B 751 (2006) 18 [hep-ph/0604160] [INSPIRE].
O. Gituliar, Master integrals for splitting functions from differential equations in QCD, JHEP
02 (2016) 017 [arXiv:1512.02045] [INSPIRE].
ADS
Article
Google Scholar
A. Mitov, S. Moch and A. Vogt, Next-to-next-to-leading order evolution of non-singlet fragmentation functions, Phys. Lett.
B 638 (2006) 61 [hep-ph/0604053] [INSPIRE].
S. Moch and A. Vogt, On third-order timelike splitting functions and top-mediated Higgs decay into hadrons, Phys. Lett.
B 659 (2008) 290 [arXiv:0709.3899] [INSPIRE].
ADS
Article
Google Scholar
A.A. Almasy, S. Moch and A. Vogt, On the next-to-next-to-leading order evolution of flavour-singlet fragmentation functions, Nucl. Phys.
B 854 (2012) 133 [arXiv:1107.2263] [INSPIRE].
ADS
Article
MATH
Google Scholar
D.P. Anderle, F. Ringer and M. Stratmann, Fragmentation functions at next-to-next-to-leading order accuracy, Phys. Rev.
D 92 (2015) 114017 [arXiv:1510.05845] [INSPIRE].
ADS
Google Scholar
NNPDF collaboration, V. Bertone, S. Carrazza, N.P. Hartland, E.R. Nocera and J. Rojo, A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties, Eur. Phys. J.
C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].
V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.
15 (1972) 438 [Yad. Fiz.
15 (1972) 781] [INSPIRE].
V.N. Gribov and L.N. Lipatov, e
+
e
−
pair annihilation and deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.
15 (1972) 675 [Yad. Fiz.
15 (1972) 1218] [INSPIRE].
M. Stratmann and W. Vogelsang, Next-to-leading order evolution of polarized and unpolarized fragmentation functions, Nucl. Phys.
B 496 (1997) 41 [hep-ph/9612250] [INSPIRE].
J. Blümlein, V. Ravindran and W.L. van Neerven, On the Drell-Levy-Yan relation to O(α
2
s
), Nucl. Phys.
B 586 (2000) 349 [hep-ph/0004172] [INSPIRE].
Yu. L. Dokshitzer, G. Marchesini and G.P. Salam, Revisiting parton evolution and the large-x limit, Phys. Lett.
B 634 (2006) 504 [hep-ph/0511302] [INSPIRE].
Yu. L. Dokshitzer and G. Marchesini, N = 4 SUSY Yang-Mills: three loops made simple(r), Phys. Lett.
B 646 (2007) 189 [hep-th/0612248] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Basso and G.P. Korchemsky, Anomalous dimensions of high-spin operators beyond the leading order, Nucl. Phys.
B 775 (2007) 1 [hep-th/0612247] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys.
B 61 (1973) 455 [INSPIRE].
W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev.
D 18 (1978) 3998 [INSPIRE].
ADS
Google Scholar
C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim.
B 12 (1972) 20 [INSPIRE].
Google Scholar
G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.
B 44 (1972) 189 [INSPIRE].
I. Bierenbaum, J. Blümlein and S. Klein, Mellin moments of the O(α
3
s
) heavy flavor contributions to unpolarized deep-inelastic scattering at Q
2 ≫ m
2
and anomalous dimensions, Nucl. Phys.
B 820 (2009) 417 [arXiv:0904.3563] [INSPIRE].
ADS
Article
MATH
Google Scholar
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.
105 (1993) 279.
ADS
MathSciNet
Article
MATH
Google Scholar
B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].
T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys.
A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].
F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, FORM, diagrams and topologies, PoS(LL2016)073 [arXiv:1608.01834] [INSPIRE].
J.A.M. Vermaseren, The Minos database facility webpage, https://www.nikhef.nl/~form/maindir/others/minos/minos.html.
S. Moch, J.A.M. Vermaseren and A. Vogt, On γ
5
in higher-order QCD calculations and the NNLO evolution of the polarized valence distribution, Phys. Lett.
B 748 (2015) 432 [arXiv:1506.04517] [INSPIRE].
ADS
Article
MATH
Google Scholar
B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-loop QCD propagators and vertices with one vanishing external momentum, JHEP
06 (2017) 040 [arXiv:1703.08532] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
K.G. Chetyrkin and F.V. Tkachov, Infrared R operation and ultraviolet counterterms in the MS scheme, Phys. Lett.
B 114 (1982) 340 [INSPIRE].
ADS
Article
Google Scholar
K.G. Chetyrkin and V.A. Smirnov, R
*
operation corrected, Phys. Lett.
B 144 (1984) 419 [INSPIRE].
ADS
Article
Google Scholar
F. Herzog and B. Ruijl, The R
*
-operation for Feynman graphs with generic numerators, JHEP
05 (2017) 037 [arXiv:1703.03776] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP
02 (2017) 090 [arXiv:1701.01404] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On Higgs decays to hadrons and the R-ratio at N
4
LO, JHEP
08 (2017) 113 [arXiv:1707.01044] [INSPIRE].
ADS
Article
Google Scholar
D.J. Broadhurst, A.L. Kataev and C.J. Maxwell, Comparison of the Gottfried and Adler sum rules within the large-N
c
expansion, Phys. Lett.
B 590 (2004) 76 [hep-ph/0403037] [INSPIRE].
V.M. Braun, A.N. Manashov, S. Moch and M. Strohmaier, Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics, JHEP
06 (2017) 037 [arXiv:1703.09532] [INSPIRE].
ADS
Article
Google Scholar
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.
A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
S. Moch and J.A.M. Vermaseren, Deep inelastic structure functions at two loops, Nucl. Phys.
B 573 (2000) 853 [hep-ph/9912355] [INSPIRE].
T. Lukowski, A. Rej and V.N. Velizhanin, Five-loop anomalous dimension of twist-two operators, Nucl. Phys.
B 831 (2010) 105 [arXiv:0912.1624] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
V.N. Velizhanin, Results related with the calculations of the full five-loop anomalous dimension of twist-two operators in the planar N = 4 SYM theory, webpage, http://thd.pnpi.spb.ru/~velizh/5loop/.
R. Kirschner and L.N. Lipatov, Double logarithmic asymptotics and Regge singularities of quark amplitudes with flavor exchange, Nucl. Phys.
B 213 (1983) 122 [INSPIRE].
ADS
Article
Google Scholar
J. Blümlein and A. Vogt, On the behavior of nonsinglet structure functions at small x, Phys. Lett.
B 370 (1996) 149 [hep-ph/9510410] [INSPIRE].
A. Vogt et al., Progress on double-logarithmic large-x and small-x resummations for (semi-)inclusive hard processes, PoS(LL2012)004 [arXiv:1212.2932] [INSPIRE].
J. Davies, C.H. Kom and A. Vogt, Resummation of small-x double logarithms in QCD: inclusive deep-inelastic scattering, to appear.
A. Vogt, Resummation of small-x double logarithms in QCD: semi-inclusive electron-positron annihilation, JHEP
10 (2011) 025 [arXiv:1108.2993] [INSPIRE].
ADS
Article
MATH
Google Scholar
C.H. Kom, A. Vogt and K. Yeats, Resummed small-x and first-moment evolution of fragmentation functions in perturbative QCD, JHEP
10 (2012) 033 [arXiv:1207.5631] [INSPIRE].
ADS
Article
Google Scholar
V.N. Velizhanin, Generalised double-logarithmic equation in QCD, arXiv:1412.7143 [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, Higher-order corrections in threshold resummation, Nucl. Phys.
B 726 (2005) 317 [hep-ph/0506288] [INSPIRE].
S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett.
B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].
V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys.
B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].
T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan production at threshold to third order in QCD, Phys. Rev. Lett.
113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].
ADS
Article
Google Scholar
J.A. Gracey, Anomalous dimension of nonsinglet Wilson operators at O(1/N
f
) in deep inelastic scattering, Phys. Lett.
B 322 (1994) 141 [hep-ph/9401214] [INSPIRE].
B. Ruijl, Towards five loop calculations in QCD, http://www.physik.uzh.ch/en/seminars/ttpseminar/HS2016.html, seminar of 6 December 2016.
V. Ravindran, J. Smith and W.L. van Neerven, Two-loop corrections to Higgs boson production, Nucl. Phys.
B 704 (2005) 332 [hep-ph/0408315] [INSPIRE].
L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP
08 (2008) 022 [arXiv:0805.3515] [INSPIRE].
ADS
Article
Google Scholar
A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun.
170 (2005) 65 [hep-ph/0408244] [INSPIRE].
T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.
141 (2001) 296 [hep-ph/0107173] [INSPIRE].
J. Ablinger, J. Blümlein, M. Round and C. Schneider, Algebraic and numeric representations of harmonic polylogarithms, their generalizations and special numbers, DESY-13-064.
T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett.
B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP
03 (2009) 079 [arXiv:0901.1091] [INSPIRE].
ADS
Article
Google Scholar
T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP
06 (2009) 081 [Erratum ibid.
11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim.
C32N5-6 (2009) 137 [Frascati Phys. Ser.
50 (2010)] [arXiv:0908.3273] [INSPIRE].
V. Ahrens, M. Neubert and L. Vernazza, Structure of infrared singularities of gauge-theory amplitudes at three and four loops, JHEP
09 (2012) 138 [arXiv:1208.4847] [INSPIRE].
ADS
Article
Google Scholar
R.H. Boels, T. Huber and G. Yang, The four-loop non-planar cusp anomalous dimension in N = 4 SYM, arXiv:1705.03444 [INSPIRE].
A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP
01 (2016) 140 [arXiv:1510.07803] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys.
B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].
A. Grozin, Leading and next-to-leading large-N
f
terms in the cusp anomalous dimension and quark-antiquark potential, PoS(LL2016)053 [arXiv:1605.03886] [INSPIRE].
R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, The n
2
f
contributions to fermionic four-loop form factors, Phys. Rev.
D 96 (2017) 014008 [arXiv:1705.06862] [INSPIRE].
ADS
Google Scholar
J.C. Collins and R.J. Scalise, The renormalization of composite operators in Yang-Mills theories using general covariant gauge, Phys. Rev.
D 50 (1994) 4117 [hep-ph/9403231] [INSPIRE].
Z. Bajnok, R.A. Janik and T. Lukowski, Four loop twist two, BFKL, wrapping and strings, Nucl. Phys.
B 816 (2009) 376 [arXiv:0811.4448] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.V. Kotikov, L.N. Lipatov, A. Rej, M. Staudacher and V.N. Velizhanin, Dressing and wrapping, J. Stat. Mech.
10 (2007) P10003 [arXiv:0704.3586] [INSPIRE].
Article
Google Scholar
J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun.
83 (1994) 45 [INSPIRE].
ADS
Article
MATH
Google Scholar
D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun.
161 (2004) 76 [hep-ph/0309015] [INSPIRE].