Skip to main content

GR uniqueness and deformations

A preprint version of the article is available at arXiv.

Abstract

In the metric formulation gravitons are described with the parity symmetric S 2+  ⊗ S 2 representation of Lorentz group. General Relativity is then the unique theory of interacting gravitons with second order field equations. We show that if a chiral S 3+  ⊗ S representation is used instead, the uniqueness is lost, and there is an infinite-parametric family of theories of interacting gravitons with second order field equations. We use the language of graviton scattering amplitudes, and show how the uniqueness of GR is avoided using simple dimensional analysis. The resulting distinct from GR gravity theories are all parity asymmetric, but share the GR MHV amplitudes. They have new all same helicity graviton scattering amplitudes at every graviton order. The amplitudes with at least one graviton of opposite helicity continue to be determinable by the BCFW recursion.

References

  1. [1]

    R. Capovilla, T. Jacobson and J. Dell, General relativity without the metric, Phys. Rev. Lett. 63 (1989) 2325 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  2. [2]

    I. Bengtsson, The cosmological constants, Phys. Lett. B 254 (1991) 55 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  3. [3]

    K. Krasnov, Renormalizable non-metric quantum gravity?, hep-th/0611182 [INSPIRE].

  4. [4]

    K. Krasnov, On deformations of Ashtekars constraint algebra, Phys. Rev. Lett. 100 (2008) 081102 [arXiv:0711.0090] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  5. [5]

    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  6. [6]

    R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976) 31 [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  7. [7]

    G. Delfino, K. Krasnov and C. Scarinci, Pure connection formalism for gravity: linearized theory, JHEP 03 (2015) 118 [arXiv:1205.7045] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  8. [8]

    K. Krasnov, Gravitons and a complex of differential operators, Mod. Phys. Lett. A 30 (2015) 1540001 [arXiv:1406.7159] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  9. [9]

    G. Delfino, K. Krasnov and C. Scarinci, Pure connection formalism for gravity: Feynman rules and the graviton-graviton scattering, JHEP 03 (2015) 119 [arXiv:1210.6215] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  10. [10]

    M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, Gravitational Born amplitudes and kinematical constraints, Phys. Rev. D 12 (1975) 397 [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    N. Arkani-Hamed, The amplituhedron, scattering amplitudes, and the wavefunction of the Universe, talk at New geometric structures in scattering amplitudes , September 22-25, Oxford U.K. (2014).

  12. [12]

    D.A. McGady and L. Rodina, Higher-spin massless S-matrices in four-dimensions, Phys. Rev. D 90 (2014) 084048 [arXiv:1311.2938] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    K. Zhou and C. Qiao, General tree-level amplitudes by factorization limits, Eur. Phys. J. C 75 (2015) 163 [arXiv:1410.5042] [INSPIRE].

    Article  ADS  Google Scholar 

  14. [14]

    M. Cofano, C.-H. Fu and K. Krasnov, Deformations of Yang-Mills theory, Phys. Rev. D 92 (2015) 065012 [arXiv:1501.00848] [INSPIRE].

    Google Scholar 

  15. [15]

    N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  16. [16]

    K. Groh, K. Krasnov and C.F. Steinwachs, Pure connection gravity at one loop: Instanton background, JHEP 07 (2013) 187 [arXiv:1304.6946] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  17. [17]

    K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    K. Krasnov, Pure connection action principle for general relativity, Phys. Rev. Lett. 106 (2011) 251103 [arXiv:1103.4498] [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    K. Krasnov, Gravity as a diffeomorphism invariant gauge theory, Phys. Rev. D 84 (2011) 024034 [arXiv:1101.4788] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    K. Krasnov, A gauge theoretic approach to gravity, Proc. Roy. Soc. Lond. A 468 (2012) 2129 [arXiv:1202.6183] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  21. [21]

    J. Fine, K. Krasnov and D. Panov, A gauge theoretic approach to Einstein 4-manifolds, New York J. Math. 20 (2014) 293 [arXiv:1312.2831] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  22. [22]

    K. Krasnov, Effective metric Lagrangians from an underlying theory with two propagating degrees of freedom, Phys. Rev. D 81 (2010) 084026 [arXiv:0911.4903] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. [23]

    K. Krasnov and Y. Shtanov, Non-metric gravity. II. Spherically symmetric solution, missing mass and redshifts of quasars, Class. Quant. Grav. 25 (2008) 025002 [arXiv:0705.2047] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  24. [24]

    K. Krasnov, One-loop β-function for an infinite-parameter family of gauge theories, JHEP 03 (2015) 030 [arXiv:1501.00849] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kirill Krasnov.

Additional information

ArXiv ePrint: 1410.8006

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krasnov, K. GR uniqueness and deformations. J. High Energ. Phys. 2015, 37 (2015). https://doi.org/10.1007/JHEP10(2015)037

Download citation

Keywords

  • Scattering Amplitudes
  • Classical Theories of Gravity