Skip to main content

Statistical tests of sterile neutrinos using cosmology and short-baseline data

A preprint version of the article is available at arXiv.

Abstract

In this paper we revisit the question of the information which cosmology provides on the scenarios with sterile neutrinos invoked to describe the SBL anomalies using Bayesian statistical tests. We perform an analysis of the cosmological data in ΛCDM+r + ν s cosmologies for different cosmological data combinations, and obtain the marginalized cosmological likelihood in terms of the two relevant parameters, the sterile neutrino mass m s and its contribution to the energy density of the early Universe ΔN eff. We then present an analysis to quantify at which level a model with one sterile neutrino is (dis)favoured with respect to a model with only three active neutrinos, using results from both short-baseline experiments and cosmology. We study the dependence of the results on the cosmological data considered, in particular on the inclusion of the recent BICEP2 results and the SZ cluster data from the Planck mission. We find that only when the cluster data is included the model with one extra sterile neutrino can become more favoured that the model with only the three active ones provided the sterile neutrino contribution to radiation density is suppressed with respect to the fully thermalized scenario. We have also quantified the level of (in)compatibility between the sterile neutrino masses implied by the cosmological and SBL results.

References

  1. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  2. V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].

    ADS  Article  Google Scholar 

  3. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    ADS  Article  Google Scholar 

  4. M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    ADS  Article  Google Scholar 

  5. K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].

  6. LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

    Google Scholar 

  7. MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Event excess in the MiniBooNE search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].

    Article  Google Scholar 

  8. MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations in the MiniBooNE experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1207.4809] [INSPIRE].

    Article  Google Scholar 

  9. G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    ADS  Google Scholar 

  10. T. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].

    ADS  Google Scholar 

  11. P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].

  12. C. Giunti and M. Laveder, Statistical significance of the Gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].

    ADS  Google Scholar 

  13. C. Giunti, M. Laveder, Y.F. Li, Q.Y. Liu and H.W. Long, Update of short-baseline electron neutrino and antineutrino disappearance, Phys. Rev. D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].

    ADS  Google Scholar 

  14. M.A. Acero, C. Giunti and M. Laveder, Limits on ν e and \( {\overset{-}{nu}}_e \) disappearance from Gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].

    ADS  Google Scholar 

  15. J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].

    ADS  Article  Google Scholar 

  16. C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].

    ADS  Google Scholar 

  17. C. Giunti and M. Laveder, Status of 3 + 1 neutrino mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].

    ADS  Google Scholar 

  18. C. Giunti and M. Laveder, Implications of 3 + 1 short-baseline neutrino oscillations, Phys. Lett. B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].

    ADS  Article  Google Scholar 

  19. A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].

    ADS  Article  Google Scholar 

  20. J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz and J. Spitz, Sterile neutrino fits to short baseline neutrino oscillation measurements, Adv. High Energy Phys. 2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].

    Article  Google Scholar 

  21. C. Giunti, M. Laveder, Y.F. Li and H.W. Long, Pragmatic view of short-baseline neutrino oscillations, Phys. Rev. D 88 (2013) 073008 [arXiv:1308.5288] [INSPIRE].

    ADS  Google Scholar 

  22. G. Karagiorgi, M.H. Shaevitz and J.M. Conrad, Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects, arXiv:1202.1024 [INSPIRE].

  23. J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].

    ADS  Article  Google Scholar 

  24. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  25. G. Mangano et al., Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].

    ADS  Article  Google Scholar 

  26. N. Saviano et al., Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Phys. Rev. D 87 (2013) 073006 [arXiv:1302.1200] [INSPIRE].

    ADS  Google Scholar 

  27. A. Mirizzi et al., The strongest bounds on active-sterile neutrino mixing after Planck data, Phys. Lett. B 726 (2013) 8 [arXiv:1303.5368] [INSPIRE].

    ADS  Article  Google Scholar 

  28. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust cosmological bounds on neutrinos and their combination with oscillation results, JHEP 08 (2010) 117 [arXiv:1006.3795] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  29. M.A. Acero and J. Lesgourgues, Cosmological constraints on a light non-thermal sterile neutrino, Phys. Rev. D 79 (2009) 045026 [arXiv:0812.2249] [INSPIRE].

    ADS  Google Scholar 

  30. J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].

    ADS  Article  Google Scholar 

  31. E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Sterile neutrino models and nonminimal cosmologies, Phys. Rev. D 85 (2012) 083522 [arXiv:1112.4661] [INSPIRE].

    ADS  Google Scholar 

  32. M. Archidiacono, E. Calabrese and A. Melchiorri, The case for dark radiation, Phys. Rev. D 84 (2011) 123008 [arXiv:1109.2767] [INSPIRE].

    ADS  Google Scholar 

  33. M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3 + 1 and 3 + 2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].

    ADS  Google Scholar 

  34. M.C. Gonzalez-Garcia, V. Niro and J. Salvado, Dark radiation and decaying matter, JHEP 04 (2013) 052 [arXiv:1212.1472] [INSPIRE].

    ADS  Article  Google Scholar 

  35. P. Di Bari, S.F. King and A. Merle, Dark radiation or warm dark matter from long lived particle decays in the light of Planck, Phys. Lett. B 724 (2013) 77 [arXiv:1303.6267] [INSPIRE].

    ADS  Article  Google Scholar 

  36. J. Hasenkamp and J. Kersten, Dark radiation from particle decay: cosmological constraints and opportunities, JCAP 08 (2013) 024 [arXiv:1212.4160] [INSPIRE].

    ADS  Article  Google Scholar 

  37. P. Graf and F.D. Steffen, Dark radiation and dark matter in supersymmetric axion models with high reheating temperature, JCAP 12 (2013) 047 [arXiv:1302.2143] [INSPIRE].

    ADS  Article  Google Scholar 

  38. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].

  39. S. Das et al., The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data, JCAP 04 (2014) 014 [arXiv:1301.1037] [INSPIRE].

    ADS  Article  Google Scholar 

  40. R. Keisler et al., A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope, Astrophys. J. 743 (2011) 28 [arXiv:1105.3182] [INSPIRE].

    ADS  Article  Google Scholar 

  41. C.L. Reichardt et al., A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations, Astrophys. J. 755 (2012) 70 [arXiv:1111.0932] [INSPIRE].

    ADS  Article  Google Scholar 

  42. BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].

    ADS  Article  Google Scholar 

  43. L. Verde, S.M. Feeney, D.J. Mortlock and H.V. Peiris, (Lack of) cosmological evidence for dark radiation after Planck, JCAP 09 (2013) 013 [arXiv:1307.2904] [INSPIRE].

    ADS  Article  Google Scholar 

  44. M. Archidiacono et al., Light sterile neutrinos after BICEP-2, JCAP 06 (2014) 031 [arXiv:1404.1794] [INSPIRE].

    ADS  Article  Google Scholar 

  45. C. Dvorkin, M. Wyman, D.H. Rudd and W. Hu, Neutrinos help reconcile Planck measurements with both Early and Local Universe, Phys. Rev. D 90 (2014) 083503 [arXiv:1403.8049] [INSPIRE].

    ADS  Google Scholar 

  46. J.-F. Zhang, Y.-H. Li and X. Zhang, Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2, arXiv:1403.7028 [INSPIRE].

  47. J.-F. Zhang, Y.-H. Li and X. Zhang, Cosmological constraints on neutrinos after BICEP2, Eur. Phys. J. C 74 (2014) 2954 [arXiv:1404.3598] [INSPIRE].

    ADS  Article  Google Scholar 

  48. F. Wu, Y. Li, Y. Lu and X. Chen, Cosmological parameter fittings with the BICEP2 data, Sci. China Phys. Mech. Astron. 57 (2014) 1449 [arXiv:1403.6462] [INSPIRE].

    ADS  Article  Google Scholar 

  49. B. Leistedt, H.V. Peiris and L. Verde, No new cosmological concordance with massive sterile neutrinos, Phys. Rev. Lett. 113 (2014) 041301 [arXiv:1404.5950] [INSPIRE].

    ADS  Article  Google Scholar 

  50. E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri and O. Mena, Relic neutrinos, thermal axions and cosmology in early 2014, Phys. Rev. D 90 (2014) 043507 [arXiv:1403.4852] [INSPIRE].

    ADS  Google Scholar 

  51. R. Flauger, J.C. Hill and D.N. Spergel, Toward an understanding of foreground emission in the BICEP2 region, JCAP 08 (2014) 039 [arXiv:1405.7351] [INSPIRE].

    ADS  Article  Google Scholar 

  52. Planck collaboration, R. Adam et al., Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, arXiv:1409.5738 [INSPIRE].

  53. J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: how disfavoured exactly?, JCAP 09 (2011) 034 [arXiv:1108.4136] [INSPIRE].

    ADS  Article  Google Scholar 

  54. J.R. Kristiansen, Ø. Elgarøy, C. Giunti and M. Laveder, Cosmology with sterile neutrino masses from oscillation experiments, arXiv:1303.4654 [INSPIRE].

  55. M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile neutrinos: cosmology versus short-baseline experiments, Phys. Rev. D 87 (2013) 125034 [arXiv:1302.6720] [INSPIRE].

    ADS  Google Scholar 

  56. S. Gariazzo, C. Giunti and M. Laveder, Light sterile neutrinos in cosmology and short-baseline oscillation experiments, JHEP 11 (2013) 211 [arXiv:1309.3192] [INSPIRE].

    ADS  Article  Google Scholar 

  57. C.M. Ho and R.J. Scherrer, Sterile neutrinos and light dark matter save each other, Phys. Rev. D 87 (2013) 065016 [arXiv:1212.1689] [INSPIRE].

    ADS  Google Scholar 

  58. G. Gelmini, S. Palomares-Ruiz and S. Pascoli, Low reheating temperature and the visible sterile neutrino, Phys. Rev. Lett. 93 (2004) 081302 [astro-ph/0403323] [INSPIRE].

    ADS  Article  Google Scholar 

  59. R. Foot and R.R. Volkas, Reconciling sterile neutrinos with big bang nucleosynthesis, Phys. Rev. Lett. 75 (1995) 4350 [hep-ph/9508275] [INSPIRE].

    ADS  Article  Google Scholar 

  60. Y.-Z. Chu and M. Cirelli, Sterile neutrinos, lepton asymmetries, primordial elements: how much of each?, Phys. Rev. D 74 (2006) 085015 [astro-ph/0608206] [INSPIRE].

    ADS  Google Scholar 

  61. L. Bento and Z. Berezhiani, Blocking active sterile neutrino oscillations in the early universe with a Majoron field, Phys. Rev. D 64 (2001) 115015 [hep-ph/0108064] [INSPIRE].

    ADS  Google Scholar 

  62. B. Dasgupta and J. Kopp, Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure, Phys. Rev. Lett. 112 (2014) 031803 [arXiv:1310.6337] [INSPIRE].

    ADS  Article  Google Scholar 

  63. S. Hannestad, R.S. Hansen and T. Tram, How self-interactions can reconcile sterile neutrinos with cosmology, Phys. Rev. Lett. 112 (2014) 031802 [arXiv:1310.5926] [INSPIRE].

    ADS  Article  Google Scholar 

  64. R. Trotta, Bayes in the sky: bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].

    ADS  Article  Google Scholar 

  65. M. Hobson et. al., Bayesian methods in cosmology, Cambridge University Press, Cambridge U.K. (2010)

  66. F. Feroz et al., Bayesian selection of sign(μ) within mSUGRA in global fits including WMAP5 results, JHEP 10 (2008) 064 [arXiv:0807.4512] [INSPIRE].

    ADS  Article  Google Scholar 

  67. J. Bergström, Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations, JHEP 08 (2012) 163 [arXiv:1205.4404] [INSPIRE].

    ADS  Article  Google Scholar 

  68. J. Bergström, Combining and comparing neutrinoless double beta decay experiments using different nuclei, JHEP 02 (2013) 093 [arXiv:1212.4484] [INSPIRE].

    ADS  Article  Google Scholar 

  69. H. Jeffreys, Theory of probability, Oxford University Press, Oxford U.K. (1961).

    MATH  Google Scholar 

  70. R.E. Kass and A.E. Raftery, Bayes factors, J. Am. Stat. Ass. 90 (1995) 773.

    MathSciNet  Article  MATH  Google Scholar 

  71. Planck collaboration, P.A.R. Ade et al., Planck intermediate results. XVI. Profile likelihoods for cosmological parameters, Astron. Astrophys. 566 (2014) A54 [arXiv:1311.1657] [INSPIRE].

    Article  Google Scholar 

  72. J.O. Berger, B. Liseo and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance parameters, Stat. Sci. 14 (1999) 1.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  73. WMAP collaboration, C.L. Bennett et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results, Astrophys. J. Suppl. 208 (2013) 20 [arXiv:1212.5225] [INSPIRE].

    Article  Google Scholar 

  74. BOSS collaboration, L. Anderson et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data release 10 and 11 galaxy samples, arXiv:1312.4877 [INSPIRE].

  75. SDSS collaboration, W.J. Percival et al., Baryon acoustic oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc. 401 (2010) 2148 [arXiv:0907.1660] [INSPIRE].

    Article  Google Scholar 

  76. N. Padmanabhan, X. Xu, D.J. Eisenstein, R. Scalzo, A.J. Cuesta et al., A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillationsI. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427 (2012) 2132 [arXiv:1202.0090] [INSPIRE].

    ADS  Article  Google Scholar 

  77. F. Beutler et al., The 6dF galaxy survey: baryon acoustic oscillations and the local Hubble constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].

    ADS  Article  Google Scholar 

  78. C. Blake et al., The WiggleZ dark energy survey: mapping the distance-redshift relation with baryon acoustic oscillations, Mon. Not. Roy. Astron. Soc. 418 (2011) 1707 [arXiv:1108.2635] [INSPIRE].

    ADS  Article  Google Scholar 

  79. A.G. Riess et al., A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730 (2011) 119 [Erratum ibid. 732 (2011) 129] [arXiv:1103.2976] [INSPIRE].

  80. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, arXiv:1303.5080 [INSPIRE].

  81. J. Benjamin et al., CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions, arXiv:1212.3327 [INSPIRE].

  82. C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments, arXiv:1303.1808 [INSPIRE].

  83. M. Kilbinger et al., CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing, Mon. Not. Roy. Astron. Soc. 430 (2013) 2200 [arXiv:1212.3338] [INSPIRE].

    ADS  Article  Google Scholar 

  84. S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

    ADS  Article  Google Scholar 

  85. A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [INSPIRE].

    ADS  Google Scholar 

  86. A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].

    ADS  Article  Google Scholar 

  87. J.-F. Zhang, J.-J. Geng and X. Zhang, Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints, arXiv:1408.0481 [INSPIRE].

  88. P. Marshall, N. Rajguru and A. Slosar, Bayesian evidence as a tool for comparing datasets, Phys. Rev. D 73 (2006) 067302 [astro-ph/0412535] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johannes Bergström.

Additional information

ArXiv ePrint: 1407.3806

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergström, J., Gonzalez-Garcia, M.C., Niro, V. et al. Statistical tests of sterile neutrinos using cosmology and short-baseline data. J. High Energ. Phys. 2014, 104 (2014). https://doi.org/10.1007/JHEP10(2014)104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2014)104

Keywords

  • Cosmology of Theories beyond the SM
  • Neutrino Physics