B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP
26 (1968) 984 [INSPIRE].
ADS
Google Scholar
V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett.
B 28 (1969) 493 [INSPIRE].
ADS
Article
Google Scholar
M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept.
460 (2008) 1 [arXiv:0704.1800] [INSPIRE].
ADS
Article
Google Scholar
M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP
12 (2012) 123 [arXiv:1209.3023] [INSPIRE].
ADS
Article
Google Scholar
K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].
LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev.
D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
Google Scholar
MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Event excess in the MiniBooNE search for
\( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \)
oscillations, Phys. Rev. Lett.
105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].
Article
Google Scholar
MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved search for
\( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \)
oscillations in the MiniBooNE experiment, Phys. Rev. Lett.
110 (2013) 161801 [arXiv:1207.4809] [INSPIRE].
Article
Google Scholar
G. Mention et al., The reactor antineutrino anomaly, Phys. Rev.
D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].
ADS
Google Scholar
T. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev.
C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].
ADS
Google Scholar
P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev.
C 84 (2011) 024617 [Erratum ibid.
C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
C. Giunti and M. Laveder, Statistical significance of the Gallium anomaly, Phys. Rev.
C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].
ADS
Google Scholar
C. Giunti, M. Laveder, Y.F. Li, Q.Y. Liu and H.W. Long, Update of short-baseline electron neutrino and antineutrino disappearance, Phys. Rev.
D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].
ADS
Google Scholar
M.A. Acero, C. Giunti and M. Laveder, Limits on ν
e
and
\( {\overset{-}{nu}}_e \)
disappearance from Gallium and reactor experiments, Phys. Rev.
D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].
ADS
Google Scholar
J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett.
107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].
ADS
Article
Google Scholar
C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev.
D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].
ADS
Google Scholar
C. Giunti and M. Laveder, Status of 3 + 1 neutrino mixing, Phys. Rev.
D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].
ADS
Google Scholar
C. Giunti and M. Laveder, Implications of 3 + 1 short-baseline neutrino oscillations, Phys. Lett.
B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].
ADS
Article
Google Scholar
A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP
07 (2012) 161 [arXiv:1205.5230] [INSPIRE].
ADS
Article
Google Scholar
J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz and J. Spitz, Sterile neutrino fits to short baseline neutrino oscillation measurements, Adv. High Energy Phys.
2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].
Article
Google Scholar
C. Giunti, M. Laveder, Y.F. Li and H.W. Long, Pragmatic view of short-baseline neutrino oscillations, Phys. Rev.
D 88 (2013) 073008 [arXiv:1308.5288] [INSPIRE].
ADS
Google Scholar
G. Karagiorgi, M.H. Shaevitz and J.M. Conrad, Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects, arXiv:1202.1024 [INSPIRE].
J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP
05 (2013) 050 [arXiv:1303.3011] [INSPIRE].
ADS
Article
Google Scholar
Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys.
G 37 (2010) 075021 [INSPIRE].
ADS
Google Scholar
G. Mangano et al., Relic neutrino decoupling including flavor oscillations, Nucl. Phys.
B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].
ADS
Article
Google Scholar
N. Saviano et al., Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Phys. Rev.
D 87 (2013) 073006 [arXiv:1302.1200] [INSPIRE].
ADS
Google Scholar
A. Mirizzi et al., The strongest bounds on active-sterile neutrino mixing after Planck data, Phys. Lett.
B 726 (2013) 8 [arXiv:1303.5368] [INSPIRE].
ADS
Article
Google Scholar
M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust cosmological bounds on neutrinos and their combination with oscillation results, JHEP
08 (2010) 117 [arXiv:1006.3795] [INSPIRE].
ADS
Article
MATH
Google Scholar
M.A. Acero and J. Lesgourgues, Cosmological constraints on a light non-thermal sterile neutrino, Phys. Rev.
D 79 (2009) 045026 [arXiv:0812.2249] [INSPIRE].
ADS
Google Scholar
J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett.
105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].
ADS
Article
Google Scholar
E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Sterile neutrino models and nonminimal cosmologies, Phys. Rev.
D 85 (2012) 083522 [arXiv:1112.4661] [INSPIRE].
ADS
Google Scholar
M. Archidiacono, E. Calabrese and A. Melchiorri, The case for dark radiation, Phys. Rev.
D 84 (2011) 123008 [arXiv:1109.2767] [INSPIRE].
ADS
Google Scholar
M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3 + 1 and 3 + 2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev.
D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].
ADS
Google Scholar
M.C. Gonzalez-Garcia, V. Niro and J. Salvado, Dark radiation and decaying matter, JHEP
04 (2013) 052 [arXiv:1212.1472] [INSPIRE].
ADS
Article
Google Scholar
P. Di Bari, S.F. King and A. Merle, Dark radiation or warm dark matter from long lived particle decays in the light of Planck, Phys. Lett.
B 724 (2013) 77 [arXiv:1303.6267] [INSPIRE].
ADS
Article
Google Scholar
J. Hasenkamp and J. Kersten, Dark radiation from particle decay: cosmological constraints and opportunities, JCAP
08 (2013) 024 [arXiv:1212.4160] [INSPIRE].
ADS
Article
Google Scholar
P. Graf and F.D. Steffen, Dark radiation and dark matter in supersymmetric axion models with high reheating temperature, JCAP
12 (2013) 047 [arXiv:1302.2143] [INSPIRE].
ADS
Article
Google Scholar
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
S. Das et al., The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data, JCAP
04 (2014) 014 [arXiv:1301.1037] [INSPIRE].
ADS
Article
Google Scholar
R. Keisler et al., A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope, Astrophys. J.
743 (2011) 28 [arXiv:1105.3182] [INSPIRE].
ADS
Article
Google Scholar
C.L. Reichardt et al., A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations, Astrophys. J.
755 (2012) 70 [arXiv:1111.0932] [INSPIRE].
ADS
Article
Google Scholar
BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett.
112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].
ADS
Article
Google Scholar
L. Verde, S.M. Feeney, D.J. Mortlock and H.V. Peiris, (Lack of) cosmological evidence for dark radiation after Planck, JCAP
09 (2013) 013 [arXiv:1307.2904] [INSPIRE].
ADS
Article
Google Scholar
M. Archidiacono et al., Light sterile neutrinos after BICEP-2, JCAP
06 (2014) 031 [arXiv:1404.1794] [INSPIRE].
ADS
Article
Google Scholar
C. Dvorkin, M. Wyman, D.H. Rudd and W. Hu, Neutrinos help reconcile Planck measurements with both Early and Local Universe, Phys. Rev.
D 90 (2014) 083503 [arXiv:1403.8049] [INSPIRE].
ADS
Google Scholar
J.-F. Zhang, Y.-H. Li and X. Zhang, Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2, arXiv:1403.7028 [INSPIRE].
J.-F. Zhang, Y.-H. Li and X. Zhang, Cosmological constraints on neutrinos after BICEP2, Eur. Phys. J.
C 74 (2014) 2954 [arXiv:1404.3598] [INSPIRE].
ADS
Article
Google Scholar
F. Wu, Y. Li, Y. Lu and X. Chen, Cosmological parameter fittings with the BICEP2 data, Sci. China Phys. Mech. Astron.
57 (2014) 1449 [arXiv:1403.6462] [INSPIRE].
ADS
Article
Google Scholar
B. Leistedt, H.V. Peiris and L. Verde, No new cosmological concordance with massive sterile neutrinos, Phys. Rev. Lett.
113 (2014) 041301 [arXiv:1404.5950] [INSPIRE].
ADS
Article
Google Scholar
E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri and O. Mena, Relic neutrinos, thermal axions and cosmology in early 2014, Phys. Rev.
D 90 (2014) 043507 [arXiv:1403.4852] [INSPIRE].
ADS
Google Scholar
R. Flauger, J.C. Hill and D.N. Spergel, Toward an understanding of foreground emission in the BICEP2 region, JCAP
08 (2014) 039 [arXiv:1405.7351] [INSPIRE].
ADS
Article
Google Scholar
Planck collaboration, R. Adam et al., Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, arXiv:1409.5738 [INSPIRE].
J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: how disfavoured exactly?, JCAP
09 (2011) 034 [arXiv:1108.4136] [INSPIRE].
ADS
Article
Google Scholar
J.R. Kristiansen, Ø. Elgarøy, C. Giunti and M. Laveder, Cosmology with sterile neutrino masses from oscillation experiments, arXiv:1303.4654 [INSPIRE].
M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile neutrinos: cosmology versus short-baseline experiments, Phys. Rev.
D 87 (2013) 125034 [arXiv:1302.6720] [INSPIRE].
ADS
Google Scholar
S. Gariazzo, C. Giunti and M. Laveder, Light sterile neutrinos in cosmology and short-baseline oscillation experiments, JHEP
11 (2013) 211 [arXiv:1309.3192] [INSPIRE].
ADS
Article
Google Scholar
C.M. Ho and R.J. Scherrer, Sterile neutrinos and light dark matter save each other, Phys. Rev.
D 87 (2013) 065016 [arXiv:1212.1689] [INSPIRE].
ADS
Google Scholar
G. Gelmini, S. Palomares-Ruiz and S. Pascoli, Low reheating temperature and the visible sterile neutrino, Phys. Rev. Lett.
93 (2004) 081302 [astro-ph/0403323] [INSPIRE].
ADS
Article
Google Scholar
R. Foot and R.R. Volkas, Reconciling sterile neutrinos with big bang nucleosynthesis, Phys. Rev. Lett.
75 (1995) 4350 [hep-ph/9508275] [INSPIRE].
ADS
Article
Google Scholar
Y.-Z. Chu and M. Cirelli, Sterile neutrinos, lepton asymmetries, primordial elements: how much of each?, Phys. Rev.
D 74 (2006) 085015 [astro-ph/0608206] [INSPIRE].
ADS
Google Scholar
L. Bento and Z. Berezhiani, Blocking active sterile neutrino oscillations in the early universe with a Majoron field, Phys. Rev.
D 64 (2001) 115015 [hep-ph/0108064] [INSPIRE].
ADS
Google Scholar
B. Dasgupta and J. Kopp, Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure, Phys. Rev. Lett.
112 (2014) 031803 [arXiv:1310.6337] [INSPIRE].
ADS
Article
Google Scholar
S. Hannestad, R.S. Hansen and T. Tram, How self-interactions can reconcile sterile neutrinos with cosmology, Phys. Rev. Lett.
112 (2014) 031802 [arXiv:1310.5926] [INSPIRE].
ADS
Article
Google Scholar
R. Trotta, Bayes in the sky: bayesian inference and model selection in cosmology, Contemp. Phys.
49 (2008) 71 [arXiv:0803.4089] [INSPIRE].
ADS
Article
Google Scholar
M. Hobson et. al., Bayesian methods in cosmology, Cambridge University Press, Cambridge U.K. (2010)
F. Feroz et al., Bayesian selection of sign(μ) within mSUGRA in global fits including WMAP5 results, JHEP
10 (2008) 064 [arXiv:0807.4512] [INSPIRE].
ADS
Article
Google Scholar
J. Bergström, Bayesian evidence for non-zero θ
13
and CP-violation in neutrino oscillations, JHEP
08 (2012) 163 [arXiv:1205.4404] [INSPIRE].
ADS
Article
Google Scholar
J. Bergström, Combining and comparing neutrinoless double beta decay experiments using different nuclei, JHEP
02 (2013) 093 [arXiv:1212.4484] [INSPIRE].
ADS
Article
Google Scholar
H. Jeffreys, Theory of probability, Oxford University Press, Oxford U.K. (1961).
MATH
Google Scholar
R.E. Kass and A.E. Raftery, Bayes factors, J. Am. Stat. Ass.
90 (1995) 773.
MathSciNet
Article
MATH
Google Scholar
Planck collaboration, P.A.R. Ade et al., Planck intermediate results. XVI. Profile likelihoods for cosmological parameters, Astron. Astrophys.
566 (2014) A54 [arXiv:1311.1657] [INSPIRE].
Article
Google Scholar
J.O. Berger, B. Liseo and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance parameters, Stat. Sci.
14 (1999) 1.
ADS
MathSciNet
Article
MATH
Google Scholar
WMAP collaboration, C.L. Bennett et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results, Astrophys. J. Suppl.
208 (2013) 20 [arXiv:1212.5225] [INSPIRE].
Article
Google Scholar
BOSS collaboration, L. Anderson et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data release 10 and 11 galaxy samples, arXiv:1312.4877 [INSPIRE].
SDSS collaboration, W.J. Percival et al., Baryon acoustic oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc.
401 (2010) 2148 [arXiv:0907.1660] [INSPIRE].
Article
Google Scholar
N. Padmanabhan, X. Xu, D.J. Eisenstein, R. Scalzo, A.J. Cuesta et al., A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations — I. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc.
427 (2012) 2132 [arXiv:1202.0090] [INSPIRE].
ADS
Article
Google Scholar
F. Beutler et al., The 6dF galaxy survey: baryon acoustic oscillations and the local Hubble constant, Mon. Not. Roy. Astron. Soc.
416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].
ADS
Article
Google Scholar
C. Blake et al., The WiggleZ dark energy survey: mapping the distance-redshift relation with baryon acoustic oscillations, Mon. Not. Roy. Astron. Soc.
418 (2011) 1707 [arXiv:1108.2635] [INSPIRE].
ADS
Article
Google Scholar
A.G. Riess et al., A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J.
730 (2011) 119 [Erratum ibid.
732 (2011) 129] [arXiv:1103.2976] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, arXiv:1303.5080 [INSPIRE].
J. Benjamin et al., CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions, arXiv:1212.3327 [INSPIRE].
C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments, arXiv:1303.1808 [INSPIRE].
M. Kilbinger et al., CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing, Mon. Not. Roy. Astron. Soc.
430 (2013) 2200 [arXiv:1212.3338] [INSPIRE].
ADS
Article
Google Scholar
S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett.
72 (1994) 17 [hep-ph/9303287] [INSPIRE].
ADS
Article
Google Scholar
A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach, Phys. Rev.
D 66 (2002) 103511 [astro-ph/0205436] [INSPIRE].
ADS
Google Scholar
A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J.
538 (2000) 473 [astro-ph/9911177] [INSPIRE].
ADS
Article
Google Scholar
J.-F. Zhang, J.-J. Geng and X. Zhang, Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints, arXiv:1408.0481 [INSPIRE].
P. Marshall, N. Rajguru and A. Slosar, Bayesian evidence as a tool for comparing datasets, Phys. Rev.
D 73 (2006) 067302 [astro-ph/0412535] [INSPIRE].
ADS
Google Scholar