Skip to main content
Log in

Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the Bayesian method for evaluating the evidence for a non-zero value of the leptonic mixing angle θ 13 and CP-violation in neutrino oscillation experiments. This is an application of the well-established method of Bayesian model selection, of which we give a concise and pedagogical overview. When comparing the hypothesis θ 13 = 0 with hypotheses where θ 13 > 0 using global data but excluding the recent reactor measurements, we obtain only a weak preference for a non-zero θ 13, even though the significance is over 3σ. We then add the reactor measurements one by one and show how the evidence for θ 13 > 0 quickly increases. When including the Double Chooz, Daya Bay, and RENO data, the evidence becomes overwhelming with a posterior probability of the hypothesis θ 13 = 0 below 10−11. Owing to the small amount of information on the CP-phase δ, very similar evidences are obtained for the CP-conserving and CP-violating hypotheses. Hence, there is, not unexpectedly, neither evidence for nor against leptonic CP-violation. However, when future experiments aiming to search for CP-violation have started taking data, this question will be of great importance and the method described here can be used as an important complement to standard analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schwetz, M. Tórtola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Schwetz, M. Tórtola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].

    ADS  Google Scholar 

  4. H. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [INSPIRE].

    ADS  Google Scholar 

  5. NEMO-3 collaboration, V. Tretyak, The NEMO-3 results after completion of data taking, AIP Conf. Proc. 1417 (2011) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  6. E. Andreotti et al., 130 Te neutrinoless double-beta decay with CUORICINO, Astropart. Phys. 34 (2011) 822 [arXiv:1012.3266] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Kraus et al., Final results from phase II of the Mainz neutrino mass searchin tritium β decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056].

    Article  ADS  Google Scholar 

  8. V. Lobashev et al., Direct search for mass of neutrino and anomaly in the tritium beta spectrum, Phys. Lett. B 460 (1999) 227 [INSPIRE].

    ADS  Google Scholar 

  9. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Mezzetto and T. Schwetz, θ 13 : Phenomenology, present status and prospect, J. Phys. G 37 (2010) 103001 [arXiv:1003.5800] [INSPIRE].

    ADS  Google Scholar 

  11. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  13. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication of reactor \( {\overline \nu_e} \) disappearance in the Double Chooz experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  14. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  15. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Escamilla, D. Latimer and D. Ernst, Atmospheric, long baseline, and reactor neutrino data constraints on θ 13, Phys. Rev. Lett. 103 (2009) 061804 [arXiv:0805.2924] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Roa, D. Latimer and D. Ernst, Implications of the Super-K atmospheric, long baseline, and reactor data for the mixing angles θ 13 and θ 23, Phys. Rev. C 81 (2010) 015501 [arXiv:0904.3930] [INSPIRE].

    ADS  Google Scholar 

  18. M. Garzelli and C. Giunti, Bayesian view of solar neutrino oscillations, JHEP 12 (2001) 017 [hep-ph/0108191] [INSPIRE].

    Article  ADS  Google Scholar 

  19. H. Ge, C. Giunti and Q. Liu, Bayesian constraints on θ 13 from solar and KamLAND neutrino data, Phys. Rev. D 80 (2009) 053009 [arXiv:0810.5443] [INSPIRE].

    ADS  Google Scholar 

  20. D. Forero, M. Tórtola and J. Valle, Global status of neutrino oscillation parameters after recent reactor measurements, arXiv:1205.4018 [INSPIRE].

  21. M. Hobson et. al (eds.), Bayesian methods in cosmology, Cambridge University Press, Cambridge U.K. (2010).

    MATH  Google Scholar 

  22. D.S. Sivia, Data analysis: a Bayesian tutorial, Oxford University Press, Oxford U.K. (1996).

    MATH  Google Scholar 

  23. R. Trotta, Applications of Bayesian model selection to cosmological parameters, Mon. Not. Roy. Astron. Soc. 378 (2007) 72 [astro-ph/0504022] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R.E. Kass and A.E. Raftery, Bayes Factors, J. Am. Stat. Ass. 90 (1995) 1773.

    Google Scholar 

  26. J. Martin, C. Ringeval and R. Trotta, Hunting down the best model of inflation with Bayesian evidence, Phys. Rev. D 83 (2011) 063524 [arXiv:1009.4157] [INSPIRE].

    ADS  Google Scholar 

  27. C. Arina, J. Hamann, R. Trotta and Y.Y. Wong, Evidence for dark matter modulation in CoGeNT?, JCAP 03 (2012) 008 [arXiv:1111.3238] [INSPIRE].

    Article  ADS  Google Scholar 

  28. F. Feroz, S. Balan and M. Hobson, Detecting extrasolar planets from stellar radial velocities using Bayesian evidence, Mon. Not. Roy. Astron. Soc. 415 (2011) 3462 [arXiv:1012.5129] [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Feroz et al., Bayesian Selection of sign(mu) within mSUGRA in Global Fits Including WMAP5 Results, JHEP 10 (2008) 064 [arXiv:0807.4512] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. AbdusSalam, B. Allanach, M. Dolan, F. Feroz and M. Hobson, Selecting a Model of Supersymmetry Breaking Mediation, Phys. Rev. D 80 (2009) 035017 [arXiv:0906.0957] [INSPIRE].

    ADS  Google Scholar 

  31. CLAS collaboration, D. Ireland et al., A Bayesian analysis of pentaquark signals from CLAS data, Phys. Rev. Lett. 100 (2008) 052001 [arXiv:0709.3154] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R.D. Cousins, Comment onBayesian Analysis of Pentaquark Signals from CLAS Data, with Response to the Reply by Ireland and Protopopsecu, Phys. Rev. Lett. 101 (2008) 029101 [arXiv:0807.1330] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. Ireland and D. Protopopescu, Ireland and Protopopescu Reply:, Phys. Rev. Lett. 101 (2008) 029102 [INSPIRE].

    Article  ADS  Google Scholar 

  34. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future Neutrino Factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [INSPIRE].

    Article  ADS  Google Scholar 

  35. LBNE collaboration, T. Akiri et al., The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups, arXiv:1110.6249 [INSPIRE].

  36. A. Longhin, A new design for the CERN-Fréjus neutrino Super Beam, Eur. Phys. J. C 71 (2011) 1745 [arXiv:1106.1096] [INSPIRE].

    Article  ADS  Google Scholar 

  37. NOvA collaboration, D. Ayres et al., NOvA: Proposal to build a 30 kiloton off-axis detector to study ν μ ν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].

  38. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the Non-Universal Higgs Model, Phys. Rev. D 83 (2011) 015014 [arXiv:0903.1279] [INSPIRE].

    ADS  Google Scholar 

  39. R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The Impact of priors and observables on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Bertone et al., Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the Phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [INSPIRE].

    ADS  Google Scholar 

  42. G. Bertone, K. Kong, R.R. de Austri and R. Trotta, Global fits of the Minimal Universal Extra Dimensions scenario, Phys. Rev. D 83 (2011) 036008 [arXiv:1010.2023] [INSPIRE].

    ADS  Google Scholar 

  43. G. Cowan, Statistical data analysis, Oxford University Press, Oxford U.K. (1998).

    Google Scholar 

  44. S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9 (1938) 60.

    Article  Google Scholar 

  45. J. Lundell and H. Snellman, On the domain of mixing angles in three flavor neutrino oscillations, Phys. Lett. B 470 (1999) 163 [hep-ph/9910402] [INSPIRE].

    ADS  Google Scholar 

  46. P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R.E. Kass and L. Wasserman, The selection of prior distributions by formal rules, J. Am. Stat. Ass. 91 (1996) 1343.

    Article  MATH  Google Scholar 

  48. J.O. Berger, Statistical decision theory and Bayesian analysis, Springer-Verlag Germany (1985).

    Book  Google Scholar 

  49. N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010 [hep-ph/0009174] [INSPIRE].

    ADS  Google Scholar 

  50. J. Espinosa, Anarchy in the neutrino sector?, hep-ph/0306019 [INSPIRE].

  51. F. Feroz and M. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

    Article  ADS  Google Scholar 

  52. F. Feroz, M. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 1601 [arXiv:0809.3437] [INSPIRE].

  53. R. Trotta, M. Kunz and A. Liddle, Designing Decisive Detections, Mon. Not. Roy. Astron. Soc. 414 (2011) 2337 [arXiv:1012.3195] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Trotta, Forecasting the Bayes factor of a future observation, Mon. Not. Roy. Astron. Soc. 378 (2007) 819 [astro-ph/0703063] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C. Watkinson, A.R. Liddle, P. Mukherjee and D. Parkinson, Optimizing future dark energy surveys for model selection goals, Mon. Not. Roy. Astron. Soc. 424 (2012) 313 [arXiv:1111.1870] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Bergström.

Additional information

ArXiv ePrint: 1205.4404

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergström, J. Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations. J. High Energ. Phys. 2012, 163 (2012). https://doi.org/10.1007/JHEP08(2012)163

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)163

Keywords

Navigation