Skip to main content

(Non)renormalization of anomalous conductivities and holography

A preprint version of the article is available at arXiv.

Abstract

The chiral magnetic and the chiral vortical effects are recently discovered phenomena arising from chiral gauge and gravitational anomalies that lead to generation of electric currents in presence of magnetic field or vorticity. The magnitude of these effects is determined by the anomalous conductivities. These conductivities can be calculated by the linear response theory, and in the strong coupling limit this calculation can be carried out by the holographic techniques. Earlier calculations in case of conformal field theories indicate non-renormalization of these conductivities where the holographic calculation agrees with the free field limit. We extend this holographic study to non-conformal theories exhibiting mass-gap and confinement-deconfinement type transitions in a holographic model based on the analytic black hole solution of Gao and Zhang. We show that radiative corrections are also absent in these non-conformal theories confirming indirect arguments of Jensen et al. in a direct and non-trivial fashion. There are various indications in field theory that such radiative corrections should arise when contribution of dynamical gluon fields to the chiral anomaly is present. Motivated by this, we seek for such corrections in the holographic picture and argue that such corrections indeed arise through mixing of the background and its fluctuations with the axion and the one-form fields that couple to the flavor and probe gauge branes through the Wess-Zumino terms. These corrections are non-vanishing when the flavor to color ratio N f /N c is finite, therefore they are only visible in the Veneziano limit at large N c .

References

  1. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    ADS  Article  Google Scholar 

  2. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  3. D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    ADS  Article  Google Scholar 

  5. J.S. Bell and R. Jackiw, A PCAC puzzle: π 0 → γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].

    ADS  Article  Google Scholar 

  6. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Article  Google Scholar 

  7. P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev. D 37 (1988) 1020 [INSPIRE].

    ADS  Google Scholar 

  8. P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev. D 36 (1987) 581 [INSPIRE].

    ADS  Google Scholar 

  9. Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  12. STAR collaboration, B.I. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].

    Article  Google Scholar 

  13. STAR collaboration, S.A. Voloshin, Probe for the strong parity violation effects at RHIC with three particle correlations, Indian J. Phys. 85 (2011) 1103 [arXiv:0806.0029] [INSPIRE].

    Article  Google Scholar 

  14. L. McLerran and V. Skokov, Comments about the electromagnetic field in heavy-ion collisions, arXiv:1305.0774 [INSPIRE].

  15. K. Landsteiner, E. Megias and F. Pena-Benitez, Anomalous transport from Kubo formulae, Lect. Notes Phys. 871 (2013) 433 [arXiv:1207.5808] [INSPIRE].

    ADS  Article  Google Scholar 

  16. M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev. D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].

    ADS  Google Scholar 

  17. G.M. Newman and D.T. Son, Response of strongly-interacting matter to magnetic field: some exact results, Phys. Rev. D 73 (2006) 045006 [hep-ph/0510049] [INSPIRE].

    ADS  Google Scholar 

  18. D.E. Kharzeev and H.J. Warringa, Chiral magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].

    ADS  Google Scholar 

  19. K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].

    ADS  Google Scholar 

  20. N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. V.P. Nair, R. Ray and S. Roy, Fluids, anomalies and the chiral magnetic effect: a group-theoretic formulation, Phys. Rev. D 86 (2012) 025012 [arXiv:1112.4022] [INSPIRE].

    ADS  Google Scholar 

  22. A.V. Sadofyev and M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach, Phys. Lett. B 697 (2011) 404 [arXiv:1010.1550] [INSPIRE].

    ADS  Google Scholar 

  23. A.V. Sadofyev, V.I. Shevchenko and V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach, Phys. Rev. D 83 (2011) 105025 [arXiv:1012.1958] [INSPIRE].

    ADS  Google Scholar 

  24. K. Fukushima and M. Ruggieri, Dielectric correction to the chiral magnetic effect, Phys. Rev. D 82 (2010) 054001 [arXiv:1004.2769] [INSPIRE].

    ADS  Google Scholar 

  25. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy and X. Wang, Radiative corrections to chiral separation effect in QED, Phys. Rev. D 88 (2013) 025025 [arXiv:1304.4606] [INSPIRE].

    ADS  Google Scholar 

  26. A. Yamamoto, Chiral magnetic effect in lattice QCD with a chiral chemical potential, Phys. Rev. Lett. 107 (2011) 031601 [arXiv:1105.0385] [INSPIRE].

    ADS  Article  Google Scholar 

  27. A. Yamamoto, Lattice study of the chiral magnetic effect in a chirally imbalanced matter, Phys. Rev. D 84 (2011) 114504 [arXiv:1111.4681] [INSPIRE].

    ADS  Google Scholar 

  28. K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP 10 (2013) 186 [arXiv:1307.3234] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. N. Banerjee, S. Dutta, S. Jain, R. Loganayagam and T. Sharma, Constraints on anomalous fluid in arbitrary dimensions, JHEP 03 (2013) 048 [arXiv:1206.6499] [INSPIRE].

    ADS  Article  Google Scholar 

  30. M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for anomalous three point functions, JHEP 03 (2004) 035 [hep-ph/0311100] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. A. Vainshtein, Perturbative and nonperturbative renormalization of anomalous quark triangles, Phys. Lett. B 569 (2003) 187 [hep-ph/0212231] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  32. A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].

  33. P.V. Buividovich, Anomalous transport with overlap fermions, Nucl. Phys. A 925 (2014) 218 [arXiv:1312.1843] [INSPIRE].

    ADS  Article  Google Scholar 

  34. K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05 (2014) 134 [arXiv:1310.7024] [INSPIRE].

    ADS  Article  Google Scholar 

  36. S. Golkar and D.T. Son, Non-renormalization of the chiral vortical effect coefficient, arXiv:1207.5806 [INSPIRE].

  37. D.-F. Hou, H. Liu and H.-C. Ren, A possible higher order correction to the vortical conductivity in a gauge field plasma, Phys. Rev. D 86 (2012) 121703 [arXiv:1210.0969] [INSPIRE].

    ADS  Google Scholar 

  38. V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov and M.V. Ulybyshev, Numerical evidence of the axial magnetic effect, Phys. Rev. D 88 (2013) 071501 [arXiv:1303.6266] [INSPIRE].

    ADS  Google Scholar 

  39. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  40. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  41. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic anomalous conductivities and the chiral magnetic effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  43. I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in holography, JHEP 05 (2011) 081 [arXiv:1102.4577] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  44. K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  45. K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  46. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  47. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

    ADS  Google Scholar 

  48. A. Gorsky, P.N. Kopnin and A.V. Zayakin, On the chiral magnetic effect in soft-wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [INSPIRE].

    ADS  Google Scholar 

  49. C.J. Gao and S.N. Zhang, A universe dominated by dilaton field, astro-ph/0605682 [INSPIRE].

  50. T. Kalaydzhyan, On the temperature dependence of the chiral vortical effects, Phys. Rev. D 89 (2014) 105012 [arXiv:1403.1256] [INSPIRE].

    ADS  Google Scholar 

  51. K. Landsteiner and L. Melgar, Holographic flow of anomalous transport coefficients, JHEP 10 (2012) 131 [arXiv:1206.4440] [INSPIRE].

    ADS  Article  Google Scholar 

  52. I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly, Phys. Rev. D 65 (2002) 105007 [hep-th/0202056] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. U. Gürsoy, S.A. Hartnoll and R. Portugues, The chiral anomaly from M-theory, Phys. Rev. D 69 (2004) 086003 [hep-th/0311088] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].

    ADS  Article  Google Scholar 

  55. T. Alho et al., A holographic model for QCD in the Veneziano limit at finite temperature and density, JHEP 04 (2014) 124 [arXiv:1312.5199] [INSPIRE].

    ADS  Article  Google Scholar 

  56. P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. S.H. Hendi, A. Sheykhi and M.H. Dehghani, Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity, Eur. Phys. J. C 70 (2010) 703 [arXiv:1002.0202] [INSPIRE].

    ADS  Article  Google Scholar 

  58. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  59. U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity, JHEP 01 (2011) 086 [arXiv:1007.0500] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  61. B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  62. M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic operator mixing and quasinormal modes on the brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  63. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. M. Jarvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  65. U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].

    Article  Google Scholar 

  66. F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  67. C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  68. F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, Holographic duals of quark gluon plasmas with unquenched flavors, Commun. Theor. Phys. 57 (2012) 364 [arXiv:1110.1744] [INSPIRE].

    Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Gürsoy.

Additional information

ArXiv ePrint: 1407.3282

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gürsoy, U., Jansen, A. (Non)renormalization of anomalous conductivities and holography. J. High Energ. Phys. 2014, 92 (2014). https://doi.org/10.1007/JHEP10(2014)092

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2014)092

Keywords

  • AdS-CFT Correspondence
  • Nonperturbative Effects
  • Anomalies in Field and String Theories