Skip to main content
Log in

Anomalous transport coefficients from Kubo formulas in Holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the presence of dense matter quantum anomalies give rise to two new transport phenomena. An anomalous current is generated either by an external magnetic field or through vortices in the fluid carrying the anomalous charge. The associated transport coefficients are the anomalous magnetic and vortical conductivities. Whereas a Kubo formula for the anomalous magnetic conductivity is well known we develop a new Kubo type formula that allows the calculation of the vortical conductivity through a two point function of the anomalous current and the energy current. We also point out that the anomalous vortical conductivity can be understood as a response to a gravitomagnetic field. We apply these Kubo formulas to a simple holographic system, the R-charged black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Deshpande et al., Workshop on P- and CP-odd Effects in Hot and Dense Matter, Brookhaven National Laboratory, RIKEN Research Center Workshop, April 2010.

  2. A.Y. Alekseev, V.V. Cheianov and J. Fröhlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly, cond-mat/9803346 [SPIRES].

  3. M. Giovannini and M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly, Phys. Rev. D 57 (1998) 2186 [hep-ph/9710234] [SPIRES].

    ADS  Google Scholar 

  4. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [SPIRES].

    Article  ADS  Google Scholar 

  5. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [SPIRES].

    ADS  Google Scholar 

  6. D.E. Kharzeev and H.J. Warringa, Chiral Magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [SPIRES].

    ADS  Google Scholar 

  7. K. Fukushima, D.E. Kharzeev and H.J. Warringa, Real-time dynamics of the Chiral Magnetic Effect, Phys. Rev. Lett. 104 (2010) 212001 [arXiv:1002.2495] [SPIRES].

    Article  ADS  Google Scholar 

  8. K. Fukushima, D.E. Kharzeev and H.J. Warringa, Electric-current Susceptibility and the Chiral Magnetic Effect, Nucl. Phys. A 836 (2010) 311 [arXiv:0912.2961] [SPIRES].

    ADS  Google Scholar 

  9. B. Müller and A. Schafer, Charge Fluctuations from the Chiral Magnetic Effect in Nuclear Collisions, Phys. Rev. C 82 (2010) 057902 [arXiv:1009.1053] [SPIRES].

    ADS  Google Scholar 

  10. V.D. Orlovsky and V.I. Shevchenko, Towards a quantum theory of chiral magnetic effect, Phys. Rev. D 82 (2010) 094032 [arXiv:1008.4977] [SPIRES].

    ADS  Google Scholar 

  11. S. Pu, J.-h. Gao and Q. Wang, A consistent description of kinetic equation with triangle anomaly, arXiv:1008.2418 [SPIRES].

  12. S.-i. Nam, Vector current correlation and charge separation via chiral magnetic effect, Phys. Rev. D 82 (2010) 045017 [arXiv:1004.3444] [SPIRES].

    ADS  Google Scholar 

  13. W.-j. Fu, Y.-x. Liu and Y.-l. Wu, Chiral Magnetic Effect and QCD Phase Transitions with Effective Models, arXiv:1003.4169 [SPIRES].

  14. M. Asakawa, A. Majumder and B. Müller, Electric Charge Separation in Strong Transient Magnetic Fields, Phys. Rev. C 81 (2010) 064912 [arXiv:1003.2436] [SPIRES].

    ADS  Google Scholar 

  15. K. Fukushima, M. Ruggieri and R. Gatto, Chiral magnetic effect in the PNJL model, Phys. Rev. D 81 (2010) 114031 [arXiv:1003.0047] [SPIRES].

    ADS  Google Scholar 

  16. W.-J. Fu, Y.-L. Wu and Y.-X. 2Liu, Chiral Magnetic Effect and Chiral Phase Transition, Commun. Theor. Phys. 55 (2011) 123 [arXiv:1002.0418] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  17. S.-i. Nam, Chiral magnetic effect (CME) at low temperature from instanton vacuum, arXiv:0912.1933 [SPIRES].

  18. D.E. Kharzeev, Topologically induced local P and CP-violation in QCD x QED, Annals Phys. 325 (2010) 205 [arXiv:0911.3715] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  19. D.K. Hong, Anomalous currents in dense matter under a magnetic field, arXiv:1010.3923 [SPIRES].

  20. K. Fukushima and M. Ruggieri, Dielectric correction to the Chiral Magnetic Effect, Phys. Rev. D 82 (2010) 054001 [arXiv:1004.2769] [SPIRES].

    ADS  Google Scholar 

  21. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [SPIRES].

    ADS  Google Scholar 

  22. M. Abramczyk, T. Blum, G. Petropoulos and R. Zhou, Chiral magnetic effect in 2+1 flavor QCD+QED, PoS(LAT2009)181 [arXiv:0911.1348] [SPIRES].

  23. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical study of chiral magnetic effect in quenched SU(2) lattice gauge theory, PoS(LAT2009)080 [arXiv:0910.4682] [SPIRES].

  24. D.E. Kharzeev and H.-U. Yee, Chiral Magnetic Wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [SPIRES].

    ADS  Google Scholar 

  25. A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [SPIRES].

    Article  ADS  Google Scholar 

  26. H.-U. Yee, Holographic Chiral Magnetic Conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [SPIRES].

    Article  ADS  Google Scholar 

  27. A. Rebhan, A. Schmitt and S. Stricker, Holographic chiral currents in a magnetic field, Prog. Theor. Phys. Suppl. 186 (2010) 463 [arXiv:1007.2494] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  28. A. Gorsky, P.N. Kopnin and A.V. Zayakin, On the Chiral Magnetic Effect in Soft-Wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [SPIRES].

    ADS  Google Scholar 

  29. A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [SPIRES].

    Article  ADS  Google Scholar 

  30. V.A. Rubakov, On chiral magnetic effect and holography, arXiv:1005.1888 [SPIRES].

  31. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [SPIRES].

    Article  ADS  Google Scholar 

  33. D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [SPIRES].

    Article  ADS  Google Scholar 

  35. B. Keren-Zur and Y. Oz, Hydrodynamics and the Detection of the QCD Axial Anomaly in Heavy Ion Collisions, JHEP 06 (2010) 006 [arXiv:1002.0804] [SPIRES].

    Article  ADS  Google Scholar 

  36. A.V. Sadofyev and M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach, Phys. Lett. B 697 (2011) 404 [arXiv:1010.1550] [SPIRES].

    ADS  Google Scholar 

  37. M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect, arXiv:1102.4334 [SPIRES].

  40. N.P. Landsman and C.G. van Weert, Real and Imaginary Time Field Theory at Finite Temperature and Density, Phys. Rept. 145 (1987) 141 [SPIRES].

    Article  ADS  Google Scholar 

  41. T.S. Evans, The Condensed Matter Limit of Relativistic QFT, hep-ph/9510298 [SPIRES].

  42. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].

    Article  ADS  Google Scholar 

  43. Y. Matsuo, S.-J. Sin, S. Takeuchi and T. Tsukioka, Magnetic conductivity and Chern-Simons Term in Holographic Hydrodynamics of Charged AdS Black Hole, JHEP 04 (2010) 071 [arXiv:0910.3722] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. B. Sahoo and H.-U. Yee, Holographic chiral shear waves from anomaly, Phys. Lett. B 689 (2010) 206 [arXiv:0910.5915] [SPIRES].

    ADS  Google Scholar 

  45. K. Landsteiner, E. Megias and F. Pena-Benitez, work in progress.

  46. J.M. Luttinger, Theory of Thermal Transport Coefficients, Phys. Rev. 135 (1964) A1505.

    Article  MathSciNet  ADS  Google Scholar 

  47. A.V. Sadofyev, V.I. Shevchenko and V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach, arXiv:1012.1958 [SPIRES].

  48. B. Mashhoon, Gravitoelectromagnetism: A Brief Review, gr-qc/0311030 [SPIRES].

  49. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of Holographic Superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic Operator Mixing and Quasinormal Modes on the Brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Landsteiner.

Additional information

ArXiv ePrint: 1102.4577

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amado, I., Landsteiner, K. & Pena-Benitez, F. Anomalous transport coefficients from Kubo formulas in Holography. J. High Energ. Phys. 2011, 81 (2011). https://doi.org/10.1007/JHEP05(2011)081

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)081

Keywords

Navigation