S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett.
56 (1986) 2459 [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.
B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.
B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
ADS
Article
Google Scholar
E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.
252 (2004) 189 [hep-th/0312171] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP
09 (2004) 006 [hep-th/0403047] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.
B 715 (2005) 499 [hep-th/0412308] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.
94 (2005) 181602 [hep-th/0501052] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP
06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP
01 (2007) 064 [hep-th/0607160] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP
07 (2011) 058 [arXiv:1010.1167] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP
12 (2010) 018 [arXiv:1009.2225] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP
09 (2011) 123 [arXiv:1007.3243] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP
05 (2009) 046 [arXiv:0902.2987] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP
04 (2008) 076 [arXiv:0801.2385] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP
09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP
03 (2010) 110 [arXiv:0903.2110] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S-matrix, JHEP
03 (2010) 020 [arXiv:0907.5418] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP
01 (2011) 041 [arXiv:1008.2958] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].
R.H. Boels, On BCFW shifts of integrands and integrals, JHEP
11 (2010) 113 [arXiv:1008.3101] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.P. Hodges and S. Huggett, Twistor diagrams, Surveys High Energ. Phys.
1 (1980) 333 [INSPIRE].
ADS
Article
Google Scholar
A.P. Hodges, Twistor diagram recursion for all gauge-theoretic tree amplitudes, hep-th/0503060 [INSPIRE].
A. Postnikov, Total positivity, Grassmannians and networks, math.CO/0609764 [INSPIRE].
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP
05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP
04 (2012) 081 [arXiv:1012.6030] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, arXiv:1312.7878 [INSPIRE].
N. Arkani-Hamed, A. Hodges and J. Trnka, Three views of the Amplituhedron, to appear.
N. Arkani-Hamed and J. Trnka, Scattering amplitudes from positive geometry, in preparation.
H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
A. Hodges, The box integrals in momentum-twistor geometry, JHEP
08 (2013) 051 [arXiv:1004.3323] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Mason and D. Skinner, Amplitudes at weak coupling as polytopes in AdS
5, J. Phys.
A 44 (2011) 135401 [arXiv:1004.3498] [INSPIRE].
ADS
MATH
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP
06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Cyclic polytope — wikipedia webpage, http://en.wikipedia.org/wiki/Cyclic_polytope.
L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP
11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Caron-Huot, Loops and trees, JHEP
05 (2011) 080 [arXiv:1007.3224] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev.
D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
ADS
MathSciNet
Google Scholar
Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.
D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
ADS
MathSciNet
Google Scholar
Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.
D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin and A. Volovich, The soft-collinear bootstrap: N = 4 Yang-Mills amplitudes at six and seven loops, JHEP
03 (2012) 032 [arXiv:1112.6432] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, Nucl. Phys.
B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.
38 (1999) 1113 [hep-th/9711200] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].
V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. École Norm. Sup.
42 (2009) 865 [math.AG/0311245] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
R. Roiban, M. Spradlin and A. Volovich, Dissolving N = 4 loop amplitudes into QCD tree amplitudes, Phys. Rev. Lett.
94 (2005) 102002 [hep-th/0412265] [INSPIRE].
ADS
Article
Google Scholar
L. Dolan and P. Goddard, Gluon tree amplitudes in open twistor string theory, JHEP
12 (2009) 032 [arXiv:0909.0499] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Nandan, A. Volovich and C. Wen, A Grassmannian étude in NMHV minors, JHEP
07 (2010) 061 [arXiv:0912.3705] [INSPIRE].
ADS
Article
MATH
Google Scholar
N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP
01 (2011) 049 [arXiv:0912.4912] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.L. Bourjaily, J. Trnka, A. Volovich and C. Wen, The Grassmannian and the twistor string: connecting all trees in N = 4 SYM, JHEP
01 (2011) 038 [arXiv:1006.1899] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘d log’ loop-integrands for super-Yang-Mills amplitudes, JHEP
05 (2013) 106 [arXiv:1212.6228] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.E. Lipstein and L. Mason, From d logs to dilogs the super Yang-Mills MHV amplitude revisited, JHEP
01 (2014) 169 [arXiv:1307.1443] [INSPIRE].
ADS
Article
Google Scholar
J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP
01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
ADS
Article
Google Scholar
S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP
07 (2012) 174 [arXiv:1112.1060] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.
111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
ADS
Article
Google Scholar
B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP
01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
ADS
Article
Google Scholar
L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP
12 (2013) 049 [arXiv:1308.2276] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys.
B 670 (2003) 439 [hep-th/0307042] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.
01 (2007) P01021 [hep-th/0610251] [INSPIRE].
Google Scholar
B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech.
11 (2006) P11014 [hep-th/0603157] [INSPIRE].
MathSciNet
Article
Google Scholar
L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral parameters for scattering amplitudes in N = 4 super Yang-Mills theory, JHEP
01 (2014) 094 [arXiv:1308.3494] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for scattering amplitudes and spectral regularization, Phys. Rev. Lett.
110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].
ADS
Article
MATH
Google Scholar
Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal Grassmannian, JHEP
02 (2014) 104 [arXiv:1309.3252] [INSPIRE].
ADS
Article
MATH
Google Scholar
A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE].
F. Cachazo and Y. Geyer, A ‘twistor string’ inspired formula for tree-level scattering amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
F. Cachazo and D. Skinner, Gravity from rational curves in twistor space, Phys. Rev. Lett.
110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].
ADS
Article
Google Scholar
D. Skinner, Twistor strings for N = 8 supergravity, arXiv:1301.0868 [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimension, arXiv:1307.2199 [INSPIRE].
F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP
07 (2014) 033 [arXiv:1309.0885] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev.
D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
ADS
MathSciNet
Google Scholar
Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.
105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP
09 (2008) 062 [arXiv:0807.3196] [INSPIRE].
ADS
Article
MATH
Google Scholar