Skip to main content
Log in

Heterotic horizons, Monge-Ampère equation and del Pezzo surfaces

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Heterotic horizons preserving 4 supersymmetries have sections which are T 2 fibrations over 6-dimensional conformally balanced Hermitian manifolds. We give new examples of horizons with sections S 3 × S 3 × T 2 and SU(3). We then examine the heterotic horizons which are T 4 fibrations over a Kähler 4-dimensional manifold. We prove that the solutions depend on 6 functions which are determined by a non-linear differential system of 6 equations that include the Monge-Ampére equation. We show that this system has an explicit solution for the Kähler manifold S 2 × S 2. We also demonstrate that there is an associated cohomological system which has solutions on del Pezzo surfaces. We raise the question of whether for every solution of the cohomological problem there is a solution of the differential system, and so a new heterotic horizon. The horizon sections have topologies which include ((k − 1)S 2 × S 4# k(S 3 × S 3) × T 2 indicating the existence of exotic black holes. We also find an example of a horizon section which gives rise to two different near horizon geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [SPIRES].

    Article  ADS  Google Scholar 

  2. B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971) 331 [SPIRES].

    Article  ADS  Google Scholar 

  3. S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [SPIRES].

    Article  ADS  Google Scholar 

  5. W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8 (1968) 245 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. P.O. Mazur, Proof of uniqueness of the Kerr-Newman black hole solution, J. Phys. A 15 (1982) 3173 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. D. Robinson, Four decades of black hole uniqueness theorems, in The Kerr spacetime: rotating black holes in general relativity, D.L. Wiltshire, M. Visser and S.M. Scott eds., Cambridge University Press, Cambridge U.K. (2009), pg. 115.

    Google Scholar 

  8. H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003) 024024 [Erratum ibid. D 70 (2004) 089902] [hep-th/0211290] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. G.W. Gibbons, G.T. Horowitz and P.K. Townsend, Higher dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav. 12 (1995) 297 [hep-th/9410073] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and non-uniqueness of static black holes in higher dimensions, Phys. Rev. Lett. 89 (2002) 041101 [hep-th/0206049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Rogatko, Uniqueness theorem of static degenerate and non-degenerate charged black holes in higher dimensions, Phys. Rev. D 67 (2003) 084025 [hep-th/0302091] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. M. Rogatko, Classification of static charged black holes in higher dimensions, Phys. Rev. D 73 (2006) 124027 [hep-th/0606116] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. P. Figueras and J. Lucietti, On the uniqueness of extremal vacuum black holes, Class. Quant. Grav. 27 (2010) 095001 [arXiv:0906.5565] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Tomizawa, Y. Yasui and A. Ishibashi, A uniqueness theorem for charged rotating black holes in five-dimensional minimal supergravity, Phys. Rev. D 79 (2009) 124023 [arXiv:0901.4724] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. S. Hollands and S. Yazadjiev, A uniqueness theorem for 5-dimensional Einstein-Maxwell black holes, Class. Quant. Grav. 25 (2008) 095010 [arXiv:0711.1722] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [SPIRES].

    Article  ADS  Google Scholar 

  21. H.K. Kunduri and J. Lucietti, An infinite class of extremal horizons in higher dimensions, arXiv:1002.4656 [SPIRES].

  22. J. Gutowski and G. Papadopoulos, Heterotic black horizons, JHEP 07 (2010) 011 [arXiv:0912.3472] [SPIRES].

    Article  ADS  Google Scholar 

  23. U. Gran, P. Lohrmann and G. Papadopoulos, The spinorial geometry of supersymmetric heterotic string backgrounds, JHEP 02 (2006) 063 [hep-th/0510176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all supersymmetric type-I backgrounds, JHEP 08 (2007) 074 [hep-th/0703143] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Papadopoulos, Heterotic supersymmetric backgrounds with compact holonomy revisited, Class. Quant. Grav. 27 (2010) 125008 [arXiv:0909.2870] [SPIRES].

    Article  ADS  Google Scholar 

  26. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Goldstein and S. Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure, Commun. Math. Phys. 251 (2004) 65 [hep-th/0212307] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. D. Grantcharov, G. Grantcharov and Y.S. Poon, Calabi-Yau connections with torsion on toric bundles, J. Diff. Geom. 78 (2008) 13 [math.DG/0306207] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  29. J.-X. Fu and S.-T. Yau, Existence of supersymmetric Hermitian metrics with torsion on non-Kähler manifolds, hep-th/0509028 [SPIRES].

  30. C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Iqbal, A. Neitzke and C. Vafa, A mysterious duality, Adv. Theor. Math. Phys. 5 (2002) 769 [hep-th/0111068] [SPIRES].

    MathSciNet  Google Scholar 

  32. P. Henry-Labordere, B. Julia and L. Paulot, Borcherds symmetries in M-theory, JHEP 04 (2002) 049 [hep-th/0203070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Ivanov and G. Papadopoulos, A no-go theorem for string warped compactifications, Phys. Lett. B 497 (2001) 309 [hep-th/0008232] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. P. Spindel, A. Sevrin, W. Troost and A. Van Proeyen, Extended supersymmetric σ-models on group manifolds. 1. The complex structures, Nucl. Phys. B 308 (1988) 662 [SPIRES].

    Article  ADS  Google Scholar 

  35. G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH Zürich, Birkhauser Verlag, Switzerland (2000).

    MATH  Google Scholar 

  36. R.R. Khuri, Classical string solitons, hep-th/9305089 [SPIRES].

  37. H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter spacetimes and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. J.P. Gauntlett, G.W. Gibbons, G. Papadopoulos and P.K. Townsend, Hyper-Kähler manifolds and multiply intersecting branes, Nucl. Phys. B 500 (1997) 133 [hep-th/9702202] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. J. Milnor and J.D. Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press, Princeton U.S.A. (1974).

    MATH  Google Scholar 

  40. R. Hartshorne, Algebraic geometry, Graduate texts in Mathematics 52, Springer-Verlag, New York U.S.A. (1977).

    MATH  Google Scholar 

  41. G.J. Galloway and R. Schoen, A generalization of Hawking’s black hole topology theorem to higher dimensions, Commun. Math. Phys. 266 (2006) 571 [gr-qc/0509107] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. R. Bott and L.W. Tu, Differential forms in algebraic topology, Graduate texts in Mathematics 82, Springer-Verlag, New York U.S.A. (1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gutowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutowski, J., Papadopoulos, G. Heterotic horizons, Monge-Ampère equation and del Pezzo surfaces. J. High Energ. Phys. 2010, 84 (2010). https://doi.org/10.1007/JHEP10(2010)084

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)084

Keywords

Navigation