Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Quantum simulation of gauge theory via orbifold lattice
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Induced QCD II: numerical results

09 July 2019

Bastian B. Brandt, Robert Lohmayer & Tilo Wettig

Ergodic sampling of the topological charge using the density of states

29 April 2021

Guido Cossu, David Lancaster, … Antonio Rago

Large-order NSPT for lattice gauge theories with fermions: the plaquette in massless QCD

24 November 2018

L. Del Debbio, F. Di Renzo & G. Filaci

Toward quantum simulating non-Abelian gauge theories

05 July 2021

Indrakshi Raychowdhury

Strong dynamics with matter in multiple representations: $$\mathrm {SU}(4)$$ SU ( 4 ) gauge theory with fundamental and sextet fermions

30 July 2019

Guido Cossu, Luigi Del Debbio, … David Preti

Approximate dual representation for Yang–Mills SU(2) gauge theory

17 August 2018

R. Leme, O. Oliveira & G. Krein

Digitising SU(2) gauge fields and the freezing transition

20 March 2022

Tobias Hartung, Timo Jakobs, … Carsten Urbach

Simulating lattice gauge theories within quantum technologies

04 August 2020

Mari Carmen Bañuls, Rainer Blatt, … Peter Zoller

Circuit-based digital adiabatic quantum simulation and pseudoquantum simulation as new approaches to lattice gauge theory

28 August 2020

Xiaopeng Cui, Yu Shi & Ji-Chong Yang

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 September 2021

Quantum simulation of gauge theory via orbifold lattice

  • Alexander J. Buser1,
  • Hrant Gharibyan1,
  • Masanori Hanada2,3,
  • Masazumi Honda3 &
  • …
  • Junyu Liu1 

Journal of High Energy Physics volume 2021, Article number: 34 (2021) Cite this article

  • 247 Accesses

  • 13 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We propose a new framework for simulating U(k) Yang-Mills theory on a universal quantum computer. This construction uses the orbifold lattice formulation proposed by Kaplan, Katz, and Unsal, who originally applied it to supersymmetric gauge theories. Our proposed approach yields a novel perspective on quantum simulation of quantum field theories, carrying certain advantages over the usual Kogut-Susskind formulation. We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories, from glueball measurements to AdS/CFT, making use of a variety of quantum information techniques including qubitization, quantum signal processing, Jordan-Lee-Preskill bounds, and shadow tomography. The generalizations to certain supersymmetric Yang-Mills theories appear to be straightforward, providing a path towards the quantum simulation of quantum gravity via holographic duality.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2 (2018) 79.

    Article  Google Scholar 

  2. J. Preskill, Simulating quantum field theory with a quantum computer, PoS LATTICE2018 (2018) 024 [arXiv:1811.10085] [INSPIRE].

  3. J. Liu, Does Richard Feynman Dream of Electric Sheep? Topics on Quantum Field Theory, Quantum Computing, and Computer Science, Ph.D. Thesis, Caltech (2021) [DOI] [INSPIRE].

  4. S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Quantum Field Theories, Science 336 (2012) 1130 [arXiv:1111.3633] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Computation of Scattering in Scalar Quantum Field Theories, Quant. Inf. Comput. 14 (2014) 1014 [arXiv:1112.4833] [INSPIRE].

    MathSciNet  Google Scholar 

  6. N. Klco and M.J. Savage, Digitization of scalar fields for quantum computing, Phys. Rev. A 99 (2019) 052335 [arXiv:1808.10378] [INSPIRE].

    Article  ADS  Google Scholar 

  7. H. Singh and S. Chandrasekharan, Qubit regularization of the O(3) sigma model, Phys. Rev. D 100 (2019) 054505 [arXiv:1905.13204] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. A.J. Buser, T. Bhattacharya, L. Cincio and R. Gupta, State preparation and measurement in a quantum simulation of the O(3) sigma model, Phys. Rev. D 102 (2020) 114514 [arXiv:2006.15746] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Brower, S. Chandrasekharan and U.J. Wiese, QCD as a quantum link model, Phys. Rev. D 60 (1999) 094502 [hep-th/9704106] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Chandrasekharan and U.J. Wiese, Quantum link models: A Discrete approach to gauge theories, Nucl. Phys. B 492 (1997) 455 [hep-lat/9609042] [INSPIRE].

  11. J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].

    Article  ADS  Google Scholar 

  12. D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a spatial lattice, JHEP 05 (2003) 037 [hep-lat/0206019] [INSPIRE].

  13. A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 1. A Target theory with four supercharges, JHEP 08 (2003) 024 [hep-lat/0302017] [INSPIRE].

  14. A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 2. Target theories with eight supercharges, JHEP 12 (2003) 031 [hep-lat/0307012] [INSPIRE].

  15. D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP 09 (2005) 042 [hep-lat/0503039] [INSPIRE].

  16. F. Sugino, A Lattice formulation of superYang-Mills theories with exact supersymmetry, JHEP 01 (2004) 015 [hep-lat/0311021] [INSPIRE].

  17. F. Sugino, SuperYang-Mills theories on the two-dimensional lattice with exact supersymmetry, JHEP 03 (2004) 067 [hep-lat/0401017] [INSPIRE].

  18. F. Sugino, Various super Yang-Mills theories with exact supersymmetry on the lattice, JHEP 01 (2005) 016 [hep-lat/0410035] [INSPIRE].

  19. S. Catterall, Lattice supersymmetry and topological field theory, JHEP 05 (2003) 038 [hep-lat/0301028] [INSPIRE].

  20. S. Catterall, A Geometrical approach to N = 2 super Yang-Mills theory on the two dimensional lattice, JHEP 11 (2004) 006 [hep-lat/0410052] [INSPIRE].

  21. M. Hanada and I. Kanamori, Lattice study of two-dimensional N = (2, 2) super Yang-Mills at large-N, Phys. Rev. D 80 (2009) 065014 [arXiv:0907.4966] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Hanada and I. Kanamori, Absence of sign problem in two-dimensional N = (2, 2) super Yang-Mills on lattice, JHEP 01 (2011) 058 [arXiv:1010.2948] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Catterall, R. Galvez, A. Joseph and D. Mehta, On the sign problem in 2D lattice super Yang-Mills, JHEP 01 (2012) 108 [arXiv:1112.3588] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. E. Giguère and D. Kadoh, Restoration of supersymmetry in two-dimensional SYM with sixteen supercharges on the lattice, JHEP 05 (2015) 082 [arXiv:1503.04416] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

    Article  ADS  Google Scholar 

  26. D.B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett. B 288 (1992) 342 [hep-lat/9206013] [INSPIRE].

  27. H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141 [hep-lat/9707022] [INSPIRE].

  28. H. Gharibyan, M. Hanada, M. Honda and J. Liu, Toward simulating Superstring/M-theory on a quantum computer, JHEP 07 (2021) 140 [arXiv:2011.06573] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

  30. M. Ünsal, Compact gauge fields for supersymmetric lattices, JHEP 11 (2005) 013 [hep-lat/0504016] [INSPIRE].

  31. M. Hanada, S. Matsuura and F. Sugino, Two-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-Mills, Prog. Theor. Phys. 126 (2011) 597 [arXiv:1004.5513] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. M. Hanada, A proposal of a fine tuning free formulation of 4d N = 4 super Yang-Mills, JHEP 11 (2010) 112 [arXiv:1009.0901] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. M. Hanada, S. Matsuura and F. Sugino, Non-perturbative construction of 2D and 4D supersymmetric Yang-Mills theories with 8 supercharges, Nucl. Phys. B 857 (2012) 335 [arXiv:1109.6807] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. I. Kanamori, Lattice formulation of two-dimensional N = (2, 2) super Yang-Mills with SU(N) gauge group, JHEP 07 (2012) 021 [arXiv:1202.2101] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Hanada, H. Shimada and N. Wintergerst, Color confinement and Bose-Einstein condensation, JHEP 08 (2021) 039 [arXiv:2001.10459] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. E. Rinaldi et al., Matrix Model simulations using Quantum Computing, Deep Learning, and Lattice Monte Carlo, arXiv:2108.02942 [INSPIRE].

  37. K. Wan and I. Kim, Fast digital methods for adiabatic state preparation, arXiv:2004.04164.

  38. E. Berkowitz, M. Hanada, E. Rinaldi and P. Vranas, Gauged And Ungauged: A Nonperturbative Test, JHEP 06 (2018) 124 [arXiv:1802.02985] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. J. Maldacena and A. Milekhin, To gauge or not to gauge?, JHEP 04 (2018) 084 [arXiv:1802.00428] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. G.H. Low and I.L. Chuang, Hamiltonian simulation by qubitization, arXiv:1610.06546.

  41. G.H. Low and I.L. Chuang, Optimal hamiltonian simulation by quantum signal processing, Phys. Rev. Lett. 118 (2017) 010501.

    Article  ADS  MathSciNet  Google Scholar 

  42. R. Babbush, D.W. Berry and H. Neven, Quantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric Qubitization, Phys. Rev. A 99 (2019) 040301 [arXiv:1806.02793] [INSPIRE].

    Article  ADS  Google Scholar 

  43. C.J. Morningstar and M.J. Peardon, The Glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].

  44. M.L.L. da Silva, D. Hadjimichef and C.A.Z. Vasconcellos, Glueball-glueball scattering in a constituent gluon model, AIP Conf. Proc. 739 (2004) 690 [hep-ph/0407114] [INSPIRE].

  45. N. Yamanaka, H. Iida, A. Nakamura and M. Wakayama, Glueball scattering cross section in lattice SU(2) Yang-Mills theory, Phys. Rev. D 102 (2020) 054507 [arXiv:1910.07756] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. Kitaev, Quantum measurements and the Abelian stabilizer problem, quant-ph/9511026.

  48. D.S. Abrams and S. Lloyd, A Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83 (1999) 5162 [quant-ph/9807070] [INSPIRE].

  49. H.-Y. Huang, R. Kueng and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Phys. 16 (2020) 1050.

    Article  ADS  Google Scholar 

  50. S.L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77 (2005) 513 [quant-ph/0410100] [INSPIRE].

  51. T. Byrnes and Y. Yamamoto, Simulating lattice gauge theories on a quantum computer, Phys. Rev. A 73 (2006) 022328 [quant-ph/0510027] [INSPIRE].

  52. A. Alex, M. Kalus, A. Huckleberry and J. von Delft, A Numerical algorithm for the explicit calculation of SU(N) and SL(N, ℂ) Clebsch-Gordan coefficients, J. Math. Phys. 52 (2011) 023507 [arXiv:1009.0437] [INSPIRE].

  53. D. Rowe and J. Repka, An algebraic algorithm for calculating Clebsch-Gordan coefficients; application to SU(2) and SU(3), J. Math. Phys. 38 (1997) 4363.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. L.C. Biedenharn and J.D. Louck, A pattern calculus for tensor operators in the unitary groups, Commun. Math. Phys. 8 (1968) 89.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. D. Bacon, I.L. Chuang and A.W. Harrow, Efficient quantum circuits for schur and clebsch-gordan transforms, Phys. Rev. Lett. 97 (2006) 170502.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. S.P. Jordan, Fast quantum algorithms for approximating some irreducible representations of groups, arXiv:0811.0562.

  57. NuQS collaboration, General Methods for Digital Quantum Simulation of Gauge Theories, Phys. Rev. D 100 (2019) 034518 [arXiv:1903.08807] [INSPIRE].

  58. L. García-Álvarez, I.L. Egusquiza, L. Lamata, A. del Campo, J. Sonner and E. Solano, Digital Quantum Simulation of Minimal AdS/CFT, Phys. Rev. Lett. 119 (2017) 040501 [arXiv:1607.08560] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. McArdle, S. Endo, A. Aspuru-Guzik, S.C. Benjamin and X. Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92 (2020) 015003.

    Article  ADS  MathSciNet  Google Scholar 

  60. J. Liu and Y. Xin, Quantum simulation of quantum field theories as quantum chemistry, JHEP 12 (2020) 011 [arXiv:2004.13234] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. A.R. Brown et al., Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes, arXiv:1911.06314 [INSPIRE].

  62. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  64. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  66. B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Hanada and J. Maltz, A proposal of the gauge theory description of the small Schwarzschild black hole in AdS5 × S5, JHEP 02 (2017) 012 [arXiv:1608.03276] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP 03 (2019) 145 [Erratum ibid. 10 (2019) 029] [arXiv:1812.05494] [INSPIRE].

  70. M. Hanada, A. Jevicki, C. Peng and N. Wintergerst, Anatomy of Deconfinement, JHEP 12 (2019) 167 [arXiv:1909.09118] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. D. Berenstein, Submatrix deconfinement and small black holes in AdS, JHEP 09 (2018) 054 [arXiv:1806.05729] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  73. XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].

  74. G. Ortiz, J.E. Gubernatis, E. Knill and R. Laflamme, Quantum algorithms for fermionic simulations, Phys. Rev. A 64 (2001) 022319 [Erratum ibid. 65 (2002) 029902] [cond-mat/0012334] [INSPIRE].

  75. C. Alexandrou et al., Comparison of topological charge definitions in Lattice QCD, Eur. Phys. J. C 80 (2020) 424 [arXiv:1708.00696] [INSPIRE].

    Article  ADS  Google Scholar 

  76. B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi and A. Tomiya, Digital Quantum Simulation of the Schwinger Model with Topological Term via Adiabatic State Preparation, arXiv:2001.00485 [INSPIRE].

  77. NuQS collaboration, Gluon Field Digitization for Quantum Computers, Phys. Rev. D 100 (2019) 114501 [arXiv:1906.11213] [INSPIRE].

  78. E. Zohar and M. Burrello, Formulation of lattice gauge theories for quantum simulations, Phys. Rev. D 91 (2015) 054506 [arXiv:1409.3085] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Walter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, 91125, USA

    Alexander J. Buser, Hrant Gharibyan & Junyu Liu

  2. Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, U.K.

    Masanori Hanada

  3. Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan

    Masanori Hanada & Masazumi Honda

Authors
  1. Alexander J. Buser
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Hrant Gharibyan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Masanori Hanada
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Masazumi Honda
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Junyu Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Junyu Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.06576

The authors are alphabetically ordered.

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buser, A.J., Gharibyan, H., Hanada, M. et al. Quantum simulation of gauge theory via orbifold lattice. J. High Energ. Phys. 2021, 34 (2021). https://doi.org/10.1007/JHEP09(2021)034

Download citation

  • Received: 05 July 2021

  • Accepted: 10 August 2021

  • Published: 06 September 2021

  • DOI: https://doi.org/10.1007/JHEP09(2021)034

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Lattice Quantum Field Theory
  • Matrix Models
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.