Skip to main content
Log in

On the sign problem in 2D lattice super Yang-Mills

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In recent years a new class of supersymmetric lattice theories have been proposed which retain one or more exact supersymmetries for non-zero lattice spacing. Recently there has been some controversy in the literature concerning whether these theories suffer from a sign problem. In this paper we address this issue by conducting simulations of the \( \mathcal{N} \) = (2, 2) and \( \mathcal{N} \) = (8, 8) supersymmetric Yang-Mills theories in two dimensions for the U(N ) theories with N = 2, 3, 4, using the new twisted lattice formulations. Our results provide evidence that these theories do not suffer from a sign problem in the continuum limit. These results thus boost confidence that the new lattice formulations can be used successfully to explore non-perturbative aspects of four-dimensional \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan, Recent developments in lattice supersymmetry, Nucl. Phys. Proc. Suppl. 129 (2004) 109 [hep-lat/0309099] [INSPIRE].

    Article  ADS  Google Scholar 

  2. J. Giedt, Deconstruction and other approaches to supersymmetric lattice field theories, Int. J. Mod. Phys. A 21 (2006) 3039 [hep-lat/0602007] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71[arXiv:0903.4881] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Joseph, Supersymmetric Yang-Mills theories with exact supersymmetry on the lattice, Int. J. Mod. Phys. A 26 (2011) 5057 [arXiv:1110.5983] [INSPIRE].

    Article  ADS  Google Scholar 

  5. F. Sugino, A lattice formulation of super Yang-mills theories with exact supersymmetry, JHEP 01 (2004) 015 [hep-lat/0311021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. F. Sugino, Super Yang-Mills theories on the two-dimensional lattice with exact supersymmetry, JHEP 03 (2004) 067 [hep-lat/0401017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Exact extended supersymmetry on a lattice: Twisted N = 2 super Yang-Mills in two dimensions, Phys. Lett. B 633 (2006) 645 [hep-lat/0507029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Exact extended supersymmetry on a lattice: twisted N = 4 super Yang-Mills in three dimensions, Nucl. Phys. B 798 (2008) 168 [arXiv:0707.3533] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. I. Kanamori and H. Suzuki, Restoration of supersymmetry on the lattice: two-dimensional N = (2,2) supersymmetric Yang-Mills theory,Nucl. Phys. B 811(2009) 420 [arXiv:0809.2856] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Hanada and I. Kanamori, Lattice study of two-dimensional N = (2, 2) super Yang-Mills at large-N , Phys. Rev. D 80 (2009) 065014 [arXiv:0907.4966] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Hanada, S. Matsuura and F. Sugino, Two-dimensional lattice for four-dimensional N = 4 supersymmetric Yang-Mills, Prog. Theor. Phys. 126 (2012) 597 [arXiv:1004.5513] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Hanada, A proposal of a fine tuning free formulation of 4 d N = 4 super Yang-Mills, JHEP 11 (2010) 112 [arXiv:1009.0901] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Hanada, S. Matsuura and F. Sugino, Non-perturbative construction of 2D and 4D supersymmetric Yang-Mills theories with 8 supercharges, Nucl. Phys. B 857 (2012) 335 [arXiv:1109.6807] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J.E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Phys. Rev. B 31 (1985) 4403.

    Article  ADS  Google Scholar 

  15. J. Giedt, Nonpositive fermion determinants in lattice supersymmetry, Nucl. Phys. B 668 (2003) 138 [hep-lat/0304006] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Catterall, First results from simulations of supersymmetric lattices, JHEP 01 (2009) 040 [arXiv:0811.1203] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Hanada and I. Kanamori, Absence of sign problem in two-dimensional N = (2, 2) super Yang-Mills on lattice, JHEP 01 (2011) 058 [arXiv:1010.2948] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Ünsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089 [hep-th/0603046] [INSPIRE].

    Article  Google Scholar 

  19. S. Catterall, From twisted supersymmetry to orbifold lattices, JHEP 01 (2008) 048 [arXiv:0712.2532] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. P.H. Damgaard and S. Matsuura, Relations among supersymmetric lattice gauge theories via orbifolding, JHEP 08 (2007) 087 [arXiv:0706.3007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. S. Elitzur, E. Rabinovici and A. Schwimmer, Supersymmetric models on the lattice, Phys. Lett. B 119 (1982) 165 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. J.M. Rabin, Homology theory of lattice fermion doubling, Nucl. Phys. B 201 (1982) 315 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Becher and H. Joos, The Dirac-Kähler equation and fermions on the lattice, Z. Phys. C 15 (1982) 343 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Aratyn, M. Goto and A. Zimerman, A lattice gauge theory for fields in the adjoint representation, Nuovo Cim. A 84 (1984) 255 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Banks, Y. Dothan and D. Horn, Geometric fermions, Phys. Lett. B 117 (1982) 413 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Marcus, The other topological twisting of N = 4 Yang-Mills, Nucl. Phys. B 452 (1995) 331 [hep-th/9506002] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [INSPIRE].

  29. S. Catterall, E. Dzienkowski, J. Giedt, A. Joseph and R. Wells, Perturbative renormalization of lattice N = 4 super Yang-Mills theory, JHEP 04 (2011) 074 [arXiv:1102.1725] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Catterall and A. Joseph, An object oriented code for simulating supersymmetric Yang-Mills theories, arXiv:1108.1503 [INSPIRE].

  31. D. Mehta, Lattice vs. continuum: Landau gauge fixing andt Hooft-Polyakov monopoles, Ph.D. Thesis, The University of Adelaide, Adelaide, Australia (2009).

  32. L. von Smekal, D. Mehta, A. Sternbeck and A.G. Williams, Modified lattice Landau gauge, PoS(LATTICE 2007)382 [arXiv:0710.2410] [INSPIRE].

  33. L. von Smekal, A. Jorkowski, D. Mehta and A. Sternbeck, Lattice Landau gauge via stereographic projection, PoS(CONFINEMENT8)048 [arXiv:0812.2992] [INSPIRE].

  34. H. Neuberger, Nonperturbative BRS invariance, Phys. Lett. B 175 (1986) 69 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Neuberger, Nonperturbative BRS invariance and the Gribov problem, Phys. Lett. B 183 (1987) 337 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. D. Mehta, A. Sternbeck, L. von Smekal and A.G. Williams, Lattice Landau gauge and algebraic geometry, PoS(QCD-TNT09)025 [arXiv:0912.0450] [INSPIRE].

  37. D. Mehta and M. Kastner, Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian, Annals Phys. 326 (2011) 1425 [arXiv:1010.5335] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. L. von Smekal, Landau gauge QCD: functional methods versus lattice simulations, arXiv:0812.0654 [INSPIRE].

  39. D. Mehta, S. Catterall, R. Galvez and A. Joseph, Investigating the sign problem for two-dimensional N = (2, 2) and N = (8, 8) lattice super Yang-Mills theories, talk presented at 29th international symposium on lattice field theory (Lattice 2011), July 10-16, California, U.S.A. (2011), arXiv:1201.1924 [INSPIRE].

  40. D. Mehta, S. Catterall, R. Galvez and A. Joseph, Supersymmetric gauge theories on the lattice: Pfaffian phases and the Neuberger 0/0 problem, arXiv:1112.5413 [INSPIRE].

  41. R. Galvez and G. van Anders, Accelerating the solution of families of shifted linear systems with CUDA, arXiv:1102.2143 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Catterall.

Additional information

ArXiv ePrint: 1112.3588

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catterall, S., Galvez, R., Joseph, A. et al. On the sign problem in 2D lattice super Yang-Mills. J. High Energ. Phys. 2012, 108 (2012). https://doi.org/10.1007/JHEP01(2012)108

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)108

Keywords

Navigation