Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Quantum error-detection at low energies

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 03 September 2019
  • volume 2019, Article number: 21 (2019)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Quantum error-detection at low energies
Download PDF
  • Martina Gschwendtner1,
  • Robert König1,2,
  • Burak Şahinoğlu3 &
  • …
  • Eugene Tang3 
  • 388 Accesses

  • 4 Citations

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Motivated by the close relationship between quantum error-correction, topological order, the holographic AdS/CFT duality, and tensor networks, we initiate the study of approximate quantum error-detecting codes in matrix product states (MPS). We first show that using open-boundary MPS to define boundary to bulk encoding maps yields at most constant distance error-detecting codes. These are degenerate ground spaces of gapped local Hamiltonians. To get around this no-go result, we consider excited states, i.e., we use the excitation ansatz to construct encoding maps: these yield error-detecting codes with distance Ω(n1−ν ) for any ν ∈ (0, 1) and Ω(log n) encoded qubits. This shows that gapped systems contain — within isolated energy bands — error-detecting codes spanned by momentum eigenstates. We also consider the gapless Heisenberg-XXX model, whose energy eigenstates can be described via Bethe ansatz tensor networks. We show that it contains — within its low-energy eigenspace — an error-detecting code with the same parameter scaling. All these codes detect arbitrary d-local (not necessarily geometrically local) errors even though they are not permutation-invariant. This suggests that a wide range of naturally occurring many-body systems possess intrinsic error-detecting features.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P.W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev.A 52 (1995) R2493.

  2. A.R. Calderbank and P.W. Shor, Good quantum error correcting codes exist, Phys. Rev.A 54 (1996) 1098 [quant-ph/9512032] [INSPIRE].

  3. A.Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv.52 (1997) 1191.

    Article  MathSciNet  Google Scholar 

  4. E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev.A 55 (1997) 900.

  5. E. Knill, R. Laflamme and W.H. Zurek, Resilient quantum computation, Science279 (1998) 342.

    Article  ADS  Google Scholar 

  6. A.Y. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys.303 (2003) 2 [quant-ph/9707021] [INSPIRE].

  7. M. Freedman, A. Kitaev, M. Larsen and Z. Wang, Topological quantum computation, Bull. Am. Math. Soc.40 (2003) 31.

    Article  MathSciNet  Google Scholar 

  8. R.W. Ogburn and J. Preskill, Topological quantum computation, in Quantum computing and quantum communications, Springer, pp. 341-356 (1999).

  9. E. Dennis, A. Kitaev, A. Landahl and J. Preskill, Topological quantum memory, J. Math. Phys.43 (2002) 4452 [quant-ph/0110143] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Nayak, S.H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys.80 (2008) 1083 [arXiv:0707.1889] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Raussendorf, J. Harrington and K. Goyal, A fault-tolerant one-way quantum computer, Annals Phys.321 (2006) 2242.

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Stern and N.H. Lindner, Topological quantum computation — from basic concepts to first experiments, Science339 (2013) 1179.

  13. B.M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys.87 (2015) 307.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Kitaev, Anyons in an exactly solved model and beyond, Annals Phys.321 (2006) 2 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. M.A. Levin and X.-G. Wen, String net condensation: A Physical mechanism for topological phases, Phys. Rev.B 71 (2005) 045110 [cond-mat/0404617] [INSPIRE].

  16. A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc.1134 (2009) 22.

    Article  ADS  Google Scholar 

  17. L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev.B 83 (2011) 075103.

  18. X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev.B 83 (2011) 035107.

  19. X. Chen, Z.-C. Gu and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev.B 84 (2011) 235128.

  20. X. Chen, Z.-X. Liu and X.-G. Wen, Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations, Phys. Rev.B 84 (2011) 235141 [arXiv:1106.4752] [INSPIRE].

  21. X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev.B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].

  22. A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Harlow, The Ryu-Takayanagi Formula from Quantum Error Correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Fannes, B. Nachtergaele and R.F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys.144 (1992) 443 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett.69 (1992) 2863 [INSPIRE].

    Article  ADS  Google Scholar 

  26. S.R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev.B 48 (1993) 10345 [INSPIRE].

  27. G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett.91 (2003) 147902.

    Article  ADS  Google Scholar 

  28. G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev. Lett.93 (2004) 040502 [quant-ph/0310089] [INSPIRE].

  29. D. Perez-Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Matrix product state representations, Quant. Inf. Comput.7 (2007) 401 [quant-ph/0608197].

  30. F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066.

  31. F. Verstraete, V. Murg and J.I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys.57 (2008) 143.

    Article  ADS  Google Scholar 

  32. G. Vidal, Class of Quantum Many-Body States That Can Be Efficiently Simulated, Phys. Rev. Lett.101 (2008) 110501 [quant-ph/0610099] [INSPIRE].

  33. F. Verstraete, M. Wolf, D. Pérez-García and J.I. Cirac, Projected entangled states: Properties and applications, Int. J. Mod. Phys.B 20 (2006) 5142.

    Article  ADS  Google Scholar 

  34. D. Perez-Garcia, F. Verstraete, J.I. Cirac and M.M. Wolf, PEPS as unique ground states of local hamiltonians, arXiv:0707.2260.

  35. C.V. Kraus, N. Schuch, F. Verstraete and J.I. Cirac, Fermionic projected entangled pair states, Phys. Rev.A 81 (2010) 052338.

  36. M. Schwarz, K. Temme and F. Verstraete, Preparing projected entangled pair states on a quantum computer, Phys. Rev. Lett.108 (2012) 110502.

    Article  ADS  Google Scholar 

  37. M. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman and F. Verstraete, Faster methods for contracting infinite two-dimensional tensor networks, Phys. Rev.B 98 (2018) 235148.

  38. O. Buerschaper, M. Aguado and G. Vidal, Explicit tensor network representation for the ground states of string-net models, Phys. Rev.B 79 (2009) 085119.

  39. Z.-C. Gu, M. Levin, B. Swingle and X.-G. Wen, Tensor-product representations for string-net condensed states, Phys. Rev.B 79 (2009) 085118.

  40. R. König, B.W. Reichardt and G. Vidal, Exact entanglement renormalization for string-net models, Phys. Rev.B 79 (2009) 195123.

  41. N. Schuch, I. Cirac and D. Pérez-García, PEPS as ground states: Degeneracy and topology, Annals Phys.325 (2010) 2153.

    Article  ADS  MathSciNet  Google Scholar 

  42. O. Buerschaper, Twisted injectivity in projected entangled pair states and the classification of quantum phases, Annals Phys.351 (2014) 447 [arXiv:1307.7763] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. M.B. Şahinoğlu et al., Characterizing topological order with matrix product operators, arXiv:1409.2150.

  44. D.J. Williamson, N. Bultinck, M. Mariën, M.B. Şahinoğlu, J. Haegeman and F. Verstraete, Matrix product operators for symmetry-protected topological phases: Gauging and edge theories, Phys. Rev.B 94 (2016) 205150 [arXiv:1412.5604] [INSPIRE].

  45. N. Bultinck, M. Mariën, D.J. Williamson, M.B. Şahinoğlu, J. Haegeman and F. Verstraete, Anyons and matrix product operator algebras, Annals Phys.378 (2017) 183 [arXiv:1511.08090] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. M.B. Şahinoğlu, M. Walter and D.J. Williamson, A tensor network framework for topological order in higher dimensions, in A tetensor network study of topological quantum phases of matter, M.B. Şahinoğlu, Ph.D. Thesis, University of Vienna (2016) [http://othes.univie.ac.at/43085/].

  47. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

  48. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. C. Akers and P. Rath, Holographic Renyi Entropy from Quantum Error Correction, JHEP05 (2019) 052 [arXiv:1811.05171] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum gravity, arXiv:1811.05382 [INSPIRE].

  52. F.G. S.L. Brandao, E. Crosson, M.B. Şahinoğlu and J. Bowen, Quantum Error Correcting Codes in Eigenstates of Translation-Invariant Spin Chains, arXiv:1710.04631 [INSPIRE].

  53. I.H. Kim and M.J. Kastoryano, Entanglement renormalization, quantum error correction and bulk causality, JHEP04 (2017) 040 [arXiv:1701.00050] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. F. Pastawski, J. Eisert and H. Wilming, Towards holography via quantum source-channel codes, Phys. Rev. Lett.119 (2017) 020501 [arXiv:1611.07528] [INSPIRE].

  55. T.M. Stace, S.D. Barrett and A.C. Doherty, Thresholds for topological codes in the presence of loss, Phys. Rev. Lett.102 (2009) 200501.

    Article  ADS  Google Scholar 

  56. H. Pollatsek and M.B. Ruskai, Permutationally invariant codes for quantum error correction, Linear Algebra Appl.392 (2004) 255.

    Article  MathSciNet  Google Scholar 

  57. Y. Ouyang, Permutation-invariant quantum codes, Phys. Rev.A 90 (2014) 062317.

  58. S. Bravyi, M.B. Hastings and S. Michalakis, Topological quantum order: Stability under local perturbations, J. Math. Phys.51 (2010) 093512 [arXiv:1001.0344] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. M.B. Hastings, Topological order at nonzero temperature, Phys. Rev. Lett.107 (2011) 210501.

    Article  ADS  Google Scholar 

  60. T. Ogawa and H. Nagaoka, A new proof of the channel coding theorem via hypothesis testing in quantum information theory, Proc. IEEE Int. Symp. Info. Theory (2002) 73.

  61. M. Aguado and G. Vidal, Entanglement renormalization and topological order, Phys. Rev. Lett.100 (2008) 070404 [arXiv:0712.0348] [INSPIRE].

  62. M.B. Hastings and T. Koma, Spectral gap and exponential decay of correlations, Commun. Math. Phys.265 (2006) 781 [math-ph/0507008] [INSPIRE].

  63. F.G. Brandão and M. Horodecki, An area law for entanglement from exponential decay of correlations, Nature Phys.9 (2013) 721.

    Article  ADS  Google Scholar 

  64. F.G. S.L. Brandão and M. Horodecki, Exponential Decay of Correlations Implies Area Law, Commun. Math. Phys.333 (2015) 761 [arXiv:1206.2947] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. N. Schuch, D. Pérez-García and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev.B 84 (2011) 165139.

  66. M.B. Hastings, Solving gapped Hamiltonians locally, Phys. Rev.B 73 (2006) 085115.

  67. J. Haegeman, S. Michalakis, B. Nachtergaele, T.J. Osborne, N. Schuch and F. Verstraete, Elementary excitations in gapped quantum spin systems, Phys. Rev. Lett.111 (2013) 080401.

  68. V. Murg, V.E. Korepin and F. Verstraete, Algebraic Bethe ansatz and tensor networks, Phys. Rev. B86 (2012) 045125.

  69. C. Crépeau, D. Gottesman and A. Smith, Approximate quantum error-correcting codes and secret sharing schemes, in Advances in Cryptology — EUROCRYPT 2005, R. Cramer ed., Berlin, Heidelberg, pp. 285-301, Springer Berlin Heidelberg (2005).

  70. H. Barnum, E. Knill and M.A. Nielsen, On quantum fidelities and channel capacities, IEEE Trans. Inform. Theory46 (2000) 1317.

    Article  MathSciNet  Google Scholar 

  71. E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola and W. Zurek, Introduction to quantum error correction, quant-ph/0207170.

  72. C. Bény and O. Oreshkov, General conditions for approximate quantum error correction and near-optimal recovery channels, Phys. Rev. Lett.104 (2010) 120501.

  73. D.E. Evans and R. Hoegh-Krohn, Spectral properties of positive maps on C ∗-algebras, J. Lond. Math. Soc.s2-17 (1978) 345.

  74. M.S. Ruiz, Tensor Networks in Condensed Matter, Ph.D. Thesis, Technische Universität München (2011).

  75. M.M. Wolf, Quantum channels & operations, https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf (2012).

  76. T.C. Bohdanowicz, E. Crosson, C. Nirkhe and H. Yuen, Good approximate quantum ldpc codes from spacetime circuit hamiltonians, arXiv:1811.00277.

  77. J. Haegeman, T. Osborne and F. Verstraete, Post-matrix product state methods: To tangent space and beyond, Phys. Rev.B 88 (2013) 075133 [arXiv:1305.1894].

  78. J. Haegeman, M. Mariën, T.J. Osborne and F. Verstraete, Geometry of matrix product states: Metric, parallel transport and curvature, J. Math. Phys.55 (2014) 021902 [arXiv:1210.7710] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. C.A. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum mechanical states, quant-ph/9712042.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Zentrum Mathematik, Technical University of Munich, 85748, Garching, Germany

    Martina Gschwendtner & Robert König

  2. Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany

    Robert König

  3. Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, 91125, U.S.A.

    Burak Şahinoğlu & Eugene Tang

Authors
  1. Martina Gschwendtner
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Robert König
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Burak Şahinoğlu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Eugene Tang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Burak Şahinoğlu.

Additional information

ArXiv ePrint: 1902.02115

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gschwendtner, M., König, R., Şahinoğlu, B. et al. Quantum error-detection at low energies. J. High Energ. Phys. 2019, 21 (2019). https://doi.org/10.1007/JHEP09(2019)021

Download citation

  • Received: 14 June 2019

  • Accepted: 08 August 2019

  • Published: 03 September 2019

  • DOI: https://doi.org/10.1007/JHEP09(2019)021

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Bethe Ansatz
  • Holography and condensed matter physics (AdS/CMT)
  • Lattice Integrable Models
  • Topological States of Matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature