Abstract
Motivated by the close relationship between quantum error-correction, topological order, the holographic AdS/CFT duality, and tensor networks, we initiate the study of approximate quantum error-detecting codes in matrix product states (MPS). We first show that using open-boundary MPS to define boundary to bulk encoding maps yields at most constant distance error-detecting codes. These are degenerate ground spaces of gapped local Hamiltonians. To get around this no-go result, we consider excited states, i.e., we use the excitation ansatz to construct encoding maps: these yield error-detecting codes with distance Ω(n1−ν ) for any ν ∈ (0, 1) and Ω(log n) encoded qubits. This shows that gapped systems contain — within isolated energy bands — error-detecting codes spanned by momentum eigenstates. We also consider the gapless Heisenberg-XXX model, whose energy eigenstates can be described via Bethe ansatz tensor networks. We show that it contains — within its low-energy eigenspace — an error-detecting code with the same parameter scaling. All these codes detect arbitrary d-local (not necessarily geometrically local) errors even though they are not permutation-invariant. This suggests that a wide range of naturally occurring many-body systems possess intrinsic error-detecting features.
References
P.W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev.A 52 (1995) R2493.
A.R. Calderbank and P.W. Shor, Good quantum error correcting codes exist, Phys. Rev.A 54 (1996) 1098 [quant-ph/9512032] [INSPIRE].
A.Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv.52 (1997) 1191.
E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev.A 55 (1997) 900.
E. Knill, R. Laflamme and W.H. Zurek, Resilient quantum computation, Science279 (1998) 342.
A.Y. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys.303 (2003) 2 [quant-ph/9707021] [INSPIRE].
M. Freedman, A. Kitaev, M. Larsen and Z. Wang, Topological quantum computation, Bull. Am. Math. Soc.40 (2003) 31.
R.W. Ogburn and J. Preskill, Topological quantum computation, in Quantum computing and quantum communications, Springer, pp. 341-356 (1999).
E. Dennis, A. Kitaev, A. Landahl and J. Preskill, Topological quantum memory, J. Math. Phys.43 (2002) 4452 [quant-ph/0110143] [INSPIRE].
C. Nayak, S.H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys.80 (2008) 1083 [arXiv:0707.1889] [INSPIRE].
R. Raussendorf, J. Harrington and K. Goyal, A fault-tolerant one-way quantum computer, Annals Phys.321 (2006) 2242.
A. Stern and N.H. Lindner, Topological quantum computation — from basic concepts to first experiments, Science339 (2013) 1179.
B.M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys.87 (2015) 307.
A. Kitaev, Anyons in an exactly solved model and beyond, Annals Phys.321 (2006) 2 [INSPIRE].
M.A. Levin and X.-G. Wen, String net condensation: A Physical mechanism for topological phases, Phys. Rev.B 71 (2005) 045110 [cond-mat/0404617] [INSPIRE].
A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc.1134 (2009) 22.
L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev.B 83 (2011) 075103.
X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev.B 83 (2011) 035107.
X. Chen, Z.-C. Gu and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev.B 84 (2011) 235128.
X. Chen, Z.-X. Liu and X.-G. Wen, Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations, Phys. Rev.B 84 (2011) 235141 [arXiv:1106.4752] [INSPIRE].
X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev.B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].
A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].
D. Harlow, The Ryu-Takayanagi Formula from Quantum Error Correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE].
M. Fannes, B. Nachtergaele and R.F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys.144 (1992) 443 [INSPIRE].
S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett.69 (1992) 2863 [INSPIRE].
S.R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev.B 48 (1993) 10345 [INSPIRE].
G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett.91 (2003) 147902.
G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev. Lett.93 (2004) 040502 [quant-ph/0310089] [INSPIRE].
D. Perez-Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Matrix product state representations, Quant. Inf. Comput.7 (2007) 401 [quant-ph/0608197].
F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066.
F. Verstraete, V. Murg and J.I. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys.57 (2008) 143.
G. Vidal, Class of Quantum Many-Body States That Can Be Efficiently Simulated, Phys. Rev. Lett.101 (2008) 110501 [quant-ph/0610099] [INSPIRE].
F. Verstraete, M. Wolf, D. Pérez-García and J.I. Cirac, Projected entangled states: Properties and applications, Int. J. Mod. Phys.B 20 (2006) 5142.
D. Perez-Garcia, F. Verstraete, J.I. Cirac and M.M. Wolf, PEPS as unique ground states of local hamiltonians, arXiv:0707.2260.
C.V. Kraus, N. Schuch, F. Verstraete and J.I. Cirac, Fermionic projected entangled pair states, Phys. Rev.A 81 (2010) 052338.
M. Schwarz, K. Temme and F. Verstraete, Preparing projected entangled pair states on a quantum computer, Phys. Rev. Lett.108 (2012) 110502.
M. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman and F. Verstraete, Faster methods for contracting infinite two-dimensional tensor networks, Phys. Rev.B 98 (2018) 235148.
O. Buerschaper, M. Aguado and G. Vidal, Explicit tensor network representation for the ground states of string-net models, Phys. Rev.B 79 (2009) 085119.
Z.-C. Gu, M. Levin, B. Swingle and X.-G. Wen, Tensor-product representations for string-net condensed states, Phys. Rev.B 79 (2009) 085118.
R. König, B.W. Reichardt and G. Vidal, Exact entanglement renormalization for string-net models, Phys. Rev.B 79 (2009) 195123.
N. Schuch, I. Cirac and D. Pérez-García, PEPS as ground states: Degeneracy and topology, Annals Phys.325 (2010) 2153.
O. Buerschaper, Twisted injectivity in projected entangled pair states and the classification of quantum phases, Annals Phys.351 (2014) 447 [arXiv:1307.7763] [INSPIRE].
M.B. Şahinoğlu et al., Characterizing topological order with matrix product operators, arXiv:1409.2150.
D.J. Williamson, N. Bultinck, M. Mariën, M.B. Şahinoğlu, J. Haegeman and F. Verstraete, Matrix product operators for symmetry-protected topological phases: Gauging and edge theories, Phys. Rev.B 94 (2016) 205150 [arXiv:1412.5604] [INSPIRE].
N. Bultinck, M. Mariën, D.J. Williamson, M.B. Şahinoğlu, J. Haegeman and F. Verstraete, Anyons and matrix product operator algebras, Annals Phys.378 (2017) 183 [arXiv:1511.08090] [INSPIRE].
M.B. Şahinoğlu, M. Walter and D.J. Williamson, A tensor network framework for topological order in higher dimensions, in A tetensor network study of topological quantum phases of matter, M.B. Şahinoğlu, Ph.D. Thesis, University of Vienna (2016) [http://othes.univie.ac.at/43085/].
B. Swingle, Entanglement Renormalization and Holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE].
P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP11 (2016) 009 [arXiv:1601.01694] [INSPIRE].
C. Akers and P. Rath, Holographic Renyi Entropy from Quantum Error Correction, JHEP05 (2019) 052 [arXiv:1811.05171] [INSPIRE].
X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum gravity, arXiv:1811.05382 [INSPIRE].
F.G. S.L. Brandao, E. Crosson, M.B. Şahinoğlu and J. Bowen, Quantum Error Correcting Codes in Eigenstates of Translation-Invariant Spin Chains, arXiv:1710.04631 [INSPIRE].
I.H. Kim and M.J. Kastoryano, Entanglement renormalization, quantum error correction and bulk causality, JHEP04 (2017) 040 [arXiv:1701.00050] [INSPIRE].
F. Pastawski, J. Eisert and H. Wilming, Towards holography via quantum source-channel codes, Phys. Rev. Lett.119 (2017) 020501 [arXiv:1611.07528] [INSPIRE].
T.M. Stace, S.D. Barrett and A.C. Doherty, Thresholds for topological codes in the presence of loss, Phys. Rev. Lett.102 (2009) 200501.
H. Pollatsek and M.B. Ruskai, Permutationally invariant codes for quantum error correction, Linear Algebra Appl.392 (2004) 255.
Y. Ouyang, Permutation-invariant quantum codes, Phys. Rev.A 90 (2014) 062317.
S. Bravyi, M.B. Hastings and S. Michalakis, Topological quantum order: Stability under local perturbations, J. Math. Phys.51 (2010) 093512 [arXiv:1001.0344] [INSPIRE].
M.B. Hastings, Topological order at nonzero temperature, Phys. Rev. Lett.107 (2011) 210501.
T. Ogawa and H. Nagaoka, A new proof of the channel coding theorem via hypothesis testing in quantum information theory, Proc. IEEE Int. Symp. Info. Theory (2002) 73.
M. Aguado and G. Vidal, Entanglement renormalization and topological order, Phys. Rev. Lett.100 (2008) 070404 [arXiv:0712.0348] [INSPIRE].
M.B. Hastings and T. Koma, Spectral gap and exponential decay of correlations, Commun. Math. Phys.265 (2006) 781 [math-ph/0507008] [INSPIRE].
F.G. Brandão and M. Horodecki, An area law for entanglement from exponential decay of correlations, Nature Phys.9 (2013) 721.
F.G. S.L. Brandão and M. Horodecki, Exponential Decay of Correlations Implies Area Law, Commun. Math. Phys.333 (2015) 761 [arXiv:1206.2947] [INSPIRE].
N. Schuch, D. Pérez-García and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev.B 84 (2011) 165139.
M.B. Hastings, Solving gapped Hamiltonians locally, Phys. Rev.B 73 (2006) 085115.
J. Haegeman, S. Michalakis, B. Nachtergaele, T.J. Osborne, N. Schuch and F. Verstraete, Elementary excitations in gapped quantum spin systems, Phys. Rev. Lett.111 (2013) 080401.
V. Murg, V.E. Korepin and F. Verstraete, Algebraic Bethe ansatz and tensor networks, Phys. Rev. B86 (2012) 045125.
C. Crépeau, D. Gottesman and A. Smith, Approximate quantum error-correcting codes and secret sharing schemes, in Advances in Cryptology — EUROCRYPT 2005, R. Cramer ed., Berlin, Heidelberg, pp. 285-301, Springer Berlin Heidelberg (2005).
H. Barnum, E. Knill and M.A. Nielsen, On quantum fidelities and channel capacities, IEEE Trans. Inform. Theory46 (2000) 1317.
E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola and W. Zurek, Introduction to quantum error correction, quant-ph/0207170.
C. Bény and O. Oreshkov, General conditions for approximate quantum error correction and near-optimal recovery channels, Phys. Rev. Lett.104 (2010) 120501.
D.E. Evans and R. Hoegh-Krohn, Spectral properties of positive maps on C ∗-algebras, J. Lond. Math. Soc.s2-17 (1978) 345.
M.S. Ruiz, Tensor Networks in Condensed Matter, Ph.D. Thesis, Technische Universität München (2011).
M.M. Wolf, Quantum channels & operations, https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf (2012).
T.C. Bohdanowicz, E. Crosson, C. Nirkhe and H. Yuen, Good approximate quantum ldpc codes from spacetime circuit hamiltonians, arXiv:1811.00277.
J. Haegeman, T. Osborne and F. Verstraete, Post-matrix product state methods: To tangent space and beyond, Phys. Rev.B 88 (2013) 075133 [arXiv:1305.1894].
J. Haegeman, M. Mariën, T.J. Osborne and F. Verstraete, Geometry of matrix product states: Metric, parallel transport and curvature, J. Math. Phys.55 (2014) 021902 [arXiv:1210.7710] [INSPIRE].
C.A. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for quantum mechanical states, quant-ph/9712042.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1902.02115
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Gschwendtner, M., König, R., Şahinoğlu, B. et al. Quantum error-detection at low energies. J. High Energ. Phys. 2019, 21 (2019). https://doi.org/10.1007/JHEP09(2019)021
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2019)021
Keywords
- Bethe Ansatz
- Holography and condensed matter physics (AdS/CMT)
- Lattice Integrable Models
- Topological States of Matter