Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Microcanonical path integrals and the holography of small black hole interiors

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 19 September 2018
  • volume 2018, Article number: 114 (2018)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Microcanonical path integrals and the holography of small black hole interiors
Download PDF
  • Donald Marolf  ORCID: orcid.org/0000-0002-4560-49971 
  • 364 Accesses

  • 28 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We use a microcanonical path integral closely related to that introduced by Brown and York in 1992 to add new entries to the AdS/CFT dictionary concerning the interiors of small black holes. Stationary points of such path integrals are also stationary points of more standard canonical-type path integrals with fixed boundary metric, but the condition for dominance is now maximizing Hubeny-Rangamani-Takayanagi entropy at fixed energy. As a result, such path integrals can bring to the fore saddles that fail to dominate in more familiar contexts. We use this feature to argue that the standard Kruskal-like two-sided extension of small AdS black holes with energy E0 is dual to a microcanonical version of the thermofield double state for AdS black holes that maximize the microcanonical bulk entropy at this energy. We also comment on entanglement in such states and on quantum effects that become large when the energy-width of the microcanonical ensemble is sufficiently small.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP 02 (2016) 171 [arXiv:1512.07850] [INSPIRE].

  3. X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Christodoulou and K. Skenderis, Holographic Construction of Excited CFT States, JHEP 04 (2016) 096 [arXiv:1602.02039] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Marolf, O. Parrikar, C. Rabideau, A. Izadi Rad and M. Van Raamsdonk, From Euclidean Sources to Lorentzian Spacetimes in Holographic Conformal Field Theories, JHEP 06 (2018) 077 [arXiv:1709.10101] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Skenderis and B.C. van Rees, Holography and wormholes in 2+1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary Wormholes and Holographic Entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. Marolf, H. Maxfield, A. Peach and S.F. Ross, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav. 32 (2015) 215006 [arXiv:1506.04128] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Maxfield, S. Ross and B. Way, Holographic partition functions and phases for higher genus Riemann surfaces, Class. Quant. Grav. 33 (2016) 125018 [arXiv:1601.00980] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Marolf, M. Rota and J. Wien, Handlebody phases and the polyhedrality of the holographic entropy cone, JHEP 10 (2017) 069 [arXiv:1705.10736] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Marolf and J. Wien, The Torus Operator in Holography, JHEP 01 (2018) 105 [arXiv:1708.03048] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal, JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. C.T. Asplund and D. Berenstein, Small AdS black holes from SYM, Phys. Lett. B 673 (2009) 264 [arXiv:0809.0712] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Hanada and J. Maltz, A proposal of the gauge theory description of the small Schwarzschild black hole in AdS 5×S 5, JHEP 02 (2017) 012 [arXiv:1608.03276] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L.G. Yaffe, Large N phase transitions and the fate of small Schwarzschild-AdS black holes, Phys. Rev. D 97 (2018) 026010 [arXiv:1710.06455] [INSPIRE].

    ADS  Google Scholar 

  19. D. Berenstein, Submatrix deconfinement and small black holes in AdS, JHEP 09 (2018) 054 [arXiv:1806.05729] [INSPIRE].

    Article  Google Scholar 

  20. L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Klosch and T. Strobl, Classical and quantum gravity in (1+1)-dimensions. Part 2: The universal coverings, Class. Quant. Grav. 13 (1996) 2395 [gr-qc/9511081] [INSPIRE].

  22. P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. B. Freivogel, V.E. Hubeny, A. Maloney, R.C. Myers, M. Rangamani and S. Shenker, Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

  25. S. Fischetti, D. Marolf and A.C. Wall, A paucity of bulk entangling surfaces: AdS wormholes with de Sitter interiors, Class. Quant. Grav. 32 (2015) 065011 [arXiv:1409.6754] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].

  27. D. Marolf, The Black Hole information problem: past, present, and future, Rept. Prog. Phys. 80 (2017) 092001 [arXiv:1703.02143] [INSPIRE].

    Article  ADS  Google Scholar 

  28. W.G. Unruh and R.M. Wald, Information Loss, Rept. Prog. Phys. 80 (2017) 092002 [arXiv:1703.02140] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.D. Brown and J.W. York Jr., The microcanonical functional integral. 1. The gravitational field, Phys. Rev. D 47 (1993) 1420 [gr-qc/9209014] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  35. X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement, JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. X. Dong and A. Lewkowycz, Entropy, Extremality, Euclidean Variations and the Equations of Motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Marolf and A.C. Wall, Eternal Black Holes and Superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].

  39. I. Bena, M. Shigemori and N.P. Warner, Black-Hole Entropy from Supergravity Superstrata States, JHEP 10 (2014) 140 [arXiv:1406.4506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. G.T. Horowitz, Comments on black holes in string theory, Class. Quant. Grav. 17 (2000) 1107 [hep-th/9910082] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. J.D. Brown and J.W. York Jr., Microcanonical action and the entropy of a rotating black hole, Math. Phys. Stud. 15 (1994) 23 [gr-qc/9303012] [INSPIRE].

  43. G.T. Horowitz and D. Marolf, Counting states of black strings with traveling waves, Phys. Rev. D 55 (1997) 835 [hep-th/9605224] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. G.T. Horowitz and D. Marolf, Counting states of black strings with traveling waves. 2., Phys. Rev. D 55 (1997) 846 [hep-th/9606113] [INSPIRE].

  45. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. T. Andrade and D. Marolf, AdS/CFT beyond the unitarity bound, JHEP 01 (2012) 049 [arXiv:1105.6337] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The Holographic Entropy Cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, University of California, Santa Barbara, CA, 93106, U.S.A.

    Donald Marolf

Authors
  1. Donald Marolf
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Donald Marolf.

Additional information

ArXiv ePrint: 1808.00394

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marolf, D. Microcanonical path integrals and the holography of small black hole interiors. J. High Energ. Phys. 2018, 114 (2018). https://doi.org/10.1007/JHEP09(2018)114

Download citation

  • Received: 16 August 2018

  • Accepted: 16 September 2018

  • Published: 19 September 2018

  • DOI: https://doi.org/10.1007/JHEP09(2018)114

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature