Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Hidden simplicity of the gravity action

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 01 September 2017
  • volume 2017, Article number: 2 (2017)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Hidden simplicity of the gravity action
Download PDF
  • Clifford Cheung1 &
  • Grant N. Remmen1 
  • 447 Accesses

  • 39 Citations

  • 4 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simply proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Virgo, LIGO Scientific collaborations, B.P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

  2. Virgo, LIGO Scientific collaborations, B.P. Abbott et al., GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].

  3. VIRGO, LIGO Scientific collaborations, B.P. Abbott et al., GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101 [arXiv:1706.01812] [INSPIRE].

  4. F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].

    Article  ADS  Google Scholar 

  5. C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Ferraris, M. Francaviglia and C. Reina, Variational Formulation of General Relativity from 1915 to 1925 ‘Palatini’s Method’ Discovered by Einstein in 1925, Gen. Rel. Grav. 14 (1982) 243.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].

  8. N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev. D 67 (2003) 084033 [Erratum ibid. D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].

  9. D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A.K. Ridgway and M.B. Wise, Static Spherically Symmetric Kerr-Schild Metrics and Implications for the Classical Double Copy, Phys. Rev. D 94 (2016) 044023 [arXiv:1512.02243] [INSPIRE].

    ADS  Google Scholar 

  13. W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].

    ADS  Google Scholar 

  14. C. Cheung and G.N. Remmen, Twofold Symmetries of the Pure Gravity Action, JHEP 01 (2017) 104 [arXiv:1612.03927] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Parattu, B.R. Majhi and T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm, Phys. Rev. D 87 (2013) 124011 [arXiv:1303.1535] [INSPIRE].

  16. Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N}=5 \) supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].

    ADS  Google Scholar 

  17. Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Ultraviolet Cancellations in Half-Maximal Supergravity as a Consequence of the Double-Copy Structure, Phys. Rev. D 86 (2012) 105014 [arXiv:1209.2472] [INSPIRE].

    ADS  Google Scholar 

  18. Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Absence of Three-Loop Four-Point Divergences in N = 4 Supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Spradlin, A. Volovich and C. Wen, Three Applications of a Bonus Relation for Gravity Amplitudes, Phys. Lett. B 674 (2009) 69 [arXiv:0812.4767] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. Z. Bern and A.K. Grant, Perturbative gravity from QCD amplitudes, Phys. Lett. B 457 (1999) 23 [hep-th/9904026] [INSPIRE].

    Article  ADS  Google Scholar 

  23. O. Hohm, On factorizations in perturbative quantum gravity, JHEP 04 (2011) 103 [arXiv:1103.0032] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. C. Cheung and C.-H. Shen, Symmetry for Flavor-Kinematics Duality from an Action, Phys. Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].

    Article  ADS  Google Scholar 

  25. F.T. Brandt, J. Frenkel and D.G.C. McKeon, General Covariant Gauge Fixing for Massless Spin-Two Fields, Phys. Rev. D 76 (2007) 105029 [arXiv:0707.2590] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, U.S.A.

    Clifford Cheung & Grant N. Remmen

Authors
  1. Clifford Cheung
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Grant N. Remmen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Grant N. Remmen.

Additional information

ArXiv ePrint: 1705.00626

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, C., Remmen, G.N. Hidden simplicity of the gravity action. J. High Energ. Phys. 2017, 2 (2017). https://doi.org/10.1007/JHEP09(2017)002

Download citation

  • Received: 13 May 2017

  • Revised: 17 August 2017

  • Accepted: 18 August 2017

  • Published: 01 September 2017

  • DOI: https://doi.org/10.1007/JHEP09(2017)002

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Scattering Amplitudes
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature