Skip to main content

Advertisement

SpringerLink
Interplay of vector-like top partner multiplets in a realistic mixing set-up
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 02 September 2015

Interplay of vector-like top partner multiplets in a realistic mixing set-up

  • Giacomo Cacciapaglia1,
  • Aldo Deandrea1,7,
  • Naveen Gaur2,
  • Daisuke Harada3,
  • Yasuhiro Okada4,5 &
  • …
  • Luca Panizzi6 

Journal of High Energy Physics volume 2015, Article number: 12 (2015) Cite this article

  • 320 Accesses

  • 27 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The ATLAS and CMS collaborations at the LHC have performed analyses on the existing data sets, studying the case of one vector-like fermion or multiplet coupling to the standard model Yukawa sector. In the near future, with more data available, these experimental collaborations will start to investigate more realistic cases. The presence of more than one extra vector-like multiplet is indeed a common situation in many extensions of the standard model. The interplay of these vector-like multiplet between precision electroweak bounds, flavour and collider phenomenology is a important question in view of establishing bounds or for the discovery of physics beyond the standard model. In this work we study the phenomenological consequences of the presence of two vector-like multiplets. We analyse the constraints on such scenarios from tree-level data and oblique corrections for the case of mixing to each of the SM generations. In the present work, we limit to scenarios with two top-like partners and no mixing in the down-sector.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  2. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  3. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  4. O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].

    Article  ADS  Google Scholar 

  6. I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval: quark and lepton masses without a Higgs, Phys. Rev. D 70 (2004) 015012 [hep-ph/0310355] [INSPIRE].

    ADS  Google Scholar 

  8. Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge-Higgs unification in the electroweak theory, Phys. Lett. B 607 (2005) 276 [hep-ph/0410193] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A dark matter candidate from Lorentz invariance in 6D, JHEP 03 (2010) 083 [arXiv:0907.4993] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].

    ADS  Google Scholar 

  11. S. Gopalakrishna, T. Mandal, S. Mitra and G. Moreau, LHC signatures of warped-space vectorlike quarks, JHEP 08 (2014) 079 [arXiv:1306.2656] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire and J.G. Wacker, The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  16. W. Fischler and W. Tangarife, Vector-like fields, messenger mixing and the Higgs mass in gauge mediation, JHEP 05 (2014) 151 [arXiv:1310.6369] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Choudhury, T.M.P. Tait and C.E.M. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].

    ADS  Google Scholar 

  18. G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].

    ADS  Google Scholar 

  19. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R.S. Chivukula, R. Foadi and E.H. Simmons, Patterns of custodial isospin violation from a composite top, Phys. Rev. D 84 (2011) 035026 [arXiv:1105.5437] [INSPIRE].

    ADS  Google Scholar 

  21. CMS B2G twiki page, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G.

  22. ATLAS Exotics twiki page, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults.

  23. F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].

    Article  Google Scholar 

  24. A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022 [arXiv:1204.0455] [INSPIRE].

    ADS  Google Scholar 

  25. J.A. Aguilar-Saavedra, Pair production of heavy Q = 2/3 singlets at LHC, Phys. Lett. B 625 (2005) 234 [Erratum ibid. B 633 (2006) 792] [hep-ph/0506187] [INSPIRE].

  26. C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].

    ADS  Google Scholar 

  27. J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Cacciapaglia, A. Deandrea, D. Harada and Y. Okada, Bounds and decays of new heavy vector-like top partners, JHEP 11 (2010) 159 [arXiv:1007.2933] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunter’s guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J.A. Aguilar-Saavedra, Mixing with vector-like quarks: constraints and expectations, EPJ Web Conf. 60 (2013) 16012 [arXiv:1306.4432] [INSPIRE].

    Article  Google Scholar 

  33. S.A.R. Ellis, R.M. Godbole, S. Gopalakrishna and J.D. Wells, Survey of vector-like fermion extensions of the standard model and their phenomenological implications, JHEP 09 (2014) 130 [arXiv:1404.4398] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Cacciapaglia, A. Deandrea, L. Panizzi, N. Gaur, D. Harada and Y. Okada, Heavy vector-like top partners at the LHC and flavour constraints, JHEP 03 (2012) 070 [arXiv:1108.6329] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, Adv. High Energy Phys. 2013 (2013) 364936 [arXiv:1207.5607] [INSPIRE].

    Article  Google Scholar 

  36. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. C. Delaunay, T. Flacke, J. Gonzalez-Fraile, S.J. Lee, G. Panico and G. Perez, Light non-degenerate composite partners at the LHC, JHEP 02 (2014) 055 [arXiv:1311.2072] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D. Barducci et al., Framework for model independent analyses of multiple extra quark scenarios, JHEP 12 (2014) 080 [arXiv:1405.0737] [INSPIRE].

    Article  ADS  Google Scholar 

  39. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  40. F. del Aguila and M.J. Bowick, The possibility of new fermions with ΔI = 0 mass, Nucl. Phys. B 224 (1983) 107 [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Uschersohn and E. Elbaz, SU(2) × U(1) model with quadruplets, Nuovo Cim. A 80 (1984) 341 [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Deandrea, Atomic parity violation in cesium and implications for new physics, Phys. Lett. B 409 (1997) 277 [hep-ph/9705435] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Particle Data Group collaboration, K. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  44. SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  45. G. Chiarelli, Single top physics at hadron colliders, EPJ Web Conf. 49 (2013) 04004 [arXiv:1302.1773] [INSPIRE].

    Article  Google Scholar 

  46. CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE].

  47. CDF collaboration, T.A. Aaltonen et al., Measurement of the single top quark production cross section and |V tb | in events with one charged lepton, large missing transverse energy and jets at CDF, Phys. Rev. Lett. 113 (2014) 261804 [arXiv:1407.4031] [INSPIRE].

  48. CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb | CKM matrix element in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE].

  49. ATLAS collaboration, Single top-quark productioncross-section at the LHC in ATLAS, EPJ Web Conf. 71 (2014) 00047.

  50. ATLAS and CMS collaboration, Top quark production at ATLAS and CMS, arXiv:1405.5126.

  51. ATLAS, CDF, CMS and D0 collaboration, Production of single top quark — Results from the Tevatron and the LHC, arXiv:1410.3045.

  52. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  53. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  54. L. Lavoura and J.P. Silva, The oblique corrections from vector-like singlet and doublet quarks, Phys. Rev. D 47 (1993) 2046 [INSPIRE].

    ADS  Google Scholar 

  55. M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    Article  ADS  Google Scholar 

  57. ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, arXiv:1507.04548 [INSPIRE].

  58. CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].

  59. G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Higgs → γγ beyond the standard model, JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].

    Article  ADS  Google Scholar 

  60. G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].

    Article  ADS  Google Scholar 

  61. CMS collaboration, Search for vector-like quarks in final states with a single lepton and jets in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-B2G-12-017 (2012).

  62. D. Barducci, A. Belyaev, M. Buchkremer, J. Marrouche, S. Moretti and L. Panizzi, XQCAT: eXtra Quark Combined Analysis Tool, arXiv:1409.3116 [INSPIRE].

  63. G. Brooijmans et al., Les Houches 2013: physics at TeV colliders: new physics working group report, arXiv:1405.1617 [INSPIRE].

  64. S. Beauceron, G. Cacciapaglia, A. Deandrea and J.D. Ruiz-Alvarez, Fully hadronic decays of a singly produced vectorlike top partner at the LHC, Phys. Rev. D 90 (2014) 115008 [arXiv:1401.5979] [INSPIRE].

    ADS  Google Scholar 

  65. L. Basso and J. Andrea, Discovery potential for T′ → tZ in the trilepton channel at the LHC, JHEP 02 (2015) 032 [arXiv:1411.7587] [INSPIRE].

    Article  ADS  Google Scholar 

  66. R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single vectorlike quark production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. ATLAS collaboration, Search for single production of vector-like quarks coupling to light generations in 4.64 fb −1 of data at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-137 (2012).

  68. ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].

  69. https://launchpad.net/xqcat.

  70. G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL, F-69622, Villeurbanne Cedex, France

    Giacomo Cacciapaglia & Aldo Deandrea

  2. Department of Physics, Dyal Singh College, University of Delhi, Lodi Road, New Delhi, 110003, India

    Naveen Gaur

  3. Centre for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India

    Daisuke Harada

  4. KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

    Yasuhiro Okada

  5. Department of Particle and Nuclear Physics, Graduate University for Advanced Studies Sokendai, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

    Yasuhiro Okada

  6. School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom

    Luca Panizzi

  7. Institut Universitaire de France, 103 boulevard Saint-Michel, 75005, Paris, France

    Aldo Deandrea

Authors
  1. Giacomo Cacciapaglia
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Aldo Deandrea
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Naveen Gaur
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Daisuke Harada
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yasuhiro Okada
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Luca Panizzi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Naveen Gaur.

Additional information

ArXiv ePrint: 1502.00370

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cacciapaglia, G., Deandrea, A., Gaur, N. et al. Interplay of vector-like top partner multiplets in a realistic mixing set-up. J. High Energ. Phys. 2015, 12 (2015). https://doi.org/10.1007/JHEP09(2015)012

Download citation

  • Received: 05 March 2015

  • Revised: 13 July 2015

  • Accepted: 28 July 2015

  • Published: 02 September 2015

  • DOI: https://doi.org/10.1007/JHEP09(2015)012

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Standard Model
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.