Journal of High Energy Physics

, 2014:81 | Cite as

Profile likelihood maps of a 15-dimensional MSSM

  • C. Strege
  • G. Bertone
  • G. J. Besjes
  • S. Caron
  • R. Ruiz de Austri
  • A. Strubig
  • R. Trotta
Open Access


We present statistically convergent profile likelihood maps obtained via global fits of a phenomenological Minimal Supersymmetric Standard Model with 15 free parameters (the MSSM-15), based on over 250M points. We derive constraints on the model parameters from direct detection limits on dark matter, the Planck relic density measurement and data from accelerator searches. We provide a detailed analysis of the rich phenomenology of this model, and determine the SUSY mass spectrum and dark matter properties that are preferred by current experimental constraints. We evaluate the impact of the measurement of the anomalous magnetic moment of the muon (g − 2) on our results, and provide an analysis of scenarios in which the lightest neutralino is a subdominant component of the dark matter. The MSSM-15 parameters are relatively weakly constrained by current data sets, with the exception of the parameters related to dark matter phenomenology (M 1, M 2, μ), which are restricted to the sub-TeV regime, mainly due to the relic density constraint. The mass of the lightest neutralino is found to be < 1.5 TeV at 99% C.L., but can extend up to 3 TeV when excluding the g − 2 constraint from the analysis. Low-mass bino-like neutralinos are strongly favoured, with spin-independent scattering cross-sections extending to very small values, ~ 10−20 pb. ATLAS SUSY null searches strongly impact on this mass range, and thus rule out a region of parameter space that is outside the reach of any current or future direct detection experiment. The best-fit point obtained after inclusion of all data corresponds to a squark mass of 2.3 TeV, a gluino mass of 2.1 TeV and a 130 GeV neutralino with a spin-independent cross-section of 2.4 × 10−10 pb, which is within the reach of future multi-ton scale direct detection experiments and of the upcoming LHC run at increased centre-of-mass energy.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M.E. Cabrera, J.A. Casas and R.R. de Austri, The health of SUSY after the Higgs discovery and the XENON100 data, JHEP 07 (2013) 182 [arXiv:1212.4821] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    O. Buchmueller et al., The CMSSM and NUHM1 after LHC run 1, arXiv:1312.5250 [INSPIRE].
  3. [3]
    J. Chakrabortty, S. Mohanty and S. Rao, Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints, JHEP 02 (2014) 074 [arXiv:1310.3620] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    M.E. Cabrera, A. Casas, R.R. de Austri and G. Bertone, LHC and dark matter phenomenology of the NUGHM, arXiv:1311.7152 [INSPIRE].
  5. [5]
    MSSM Working Group collaboration, A. Djouadi et al., The minimal supersymmetric standard model: group summary report, hep-ph/9901246 [INSPIRE].
  6. [6]
    C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry without prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    A. Arbey, M. Battaglia and F. Mahmoudi, Implications of LHC searches on SUSY particle spectra: the pMSSM parameter space with neutralino dark matter, Eur. Phys. J. C 72 (2012) 1847 [arXiv:1110.3726] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    M. Cahill-Rowley et al., Complementarity and searches for dark matter in the pMSSM, arXiv:1305.6921 [INSPIRE].
  9. [9]
    E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S.S. AbdusSalam, LHC-7 supersymmetry search interpretation within the phenomenological MSSM, Phys. Rev. D 87 (2013) 115012 [arXiv:1211.0999] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Boehm, P.S.B. Dev, A. Mazumdar and E. Pukartas, Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck data, JHEP 06 (2013) 113 [arXiv:1303.5386] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    C. Muñoz, Dark matter detection in the light of recent experimental results, Int. J. Mod. Phys. A 19 (2004) 3093 [hep-ph/0309346] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    R.N. Mohapatra, Supersymmetric grand unification: an update, hep-ph/9911272 [INSPIRE].
  17. [17]
    S. Raby, Desperately seeking supersymmetry (SUSY), Rept. Prog. Phys. 67 (2004) 755 [hep-ph/0401155] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, M. Muether, Combination of CDF and D0 results on the mass of the top quark using up to 8.7 fb−1 at the Tevatron, arXiv:1305.3929 [INSPIRE].
  19. [19]
    R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    L. Roszkowski, R. Ruiz de Austri and R. Trotta, Implications for the constrained MSSM from a new prediction for b, JHEP 07 (2007) 075 [arXiv:0705.2012] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    G. Bertone et al., Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
  24. [24]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].CrossRefMATHADSGoogle Scholar
  25. [25]
    MicrOMEGAs webpage,
  26. [26]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].CrossRefMATHADSGoogle Scholar
  27. [27]
    P. Gondolo, J. Edsjö, P. Ullio, \( \mathrm{L}.\;\mathrm{Bergstr}\ddot{\mathrm{m}} \), M. Schelke, E.A. Baltz, T. Bringmann and G. Duda, DarkSUSY webpage,
  28. [28]
    P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    SuperIso webpage,
  30. [30]
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
  32. [32]
    G. Degrassi, P. Gambino and P. Slavich, SusyBSG: a fortran code for BR[BX s γ] in the MSSM with minimal flavor violation, Comput. Phys. Commun. 179 (2008) 759 [arXiv:0712.3265] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    FeynHiggs webpage,
  34. [34]
    S. Heinemeyer, W. Hollik, A.M. Weber and G. Weiglein, Z pole observables in the MSSM, JHEP 04 (2008) 039 [arXiv:0710.2972] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    J. Skilling, Nested sampling for general Bayesian computation, Bayesian Anal. 1 (2006) 833.MathSciNetCrossRefGoogle Scholar
  38. [38]
    F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri and R. Trotta, Challenges of profile likelihood evaluation in multi-dimensional SUSY scans, JHEP 06 (2011) 042 [arXiv:1101.3296] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    C. Strege et al., Global fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    ATLAS, CDF, CMS and D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  41. [41]
    Particle data group webpage,
  42. [42]
    C. Strege et al., Updated global fits of the CMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, JCAP 03 (2012) 030 [arXiv:1112.4192] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    M. Pato et al., Complementarity of dark matter direct detection targets, Phys. Rev. D 83 (2011) 083505 [arXiv:1012.3458] [INSPIRE].ADSGoogle Scholar
  44. [44]
    X.-L. Ren, L.S. Geng, J. Martin Camalich, J. Meng and H. Toki, Octet baryon masses in next-to-next-to-next-to-leading order covariant baryon chiral perturbation theory, JHEP 12 (2012) 073 [arXiv:1209.3641] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    J. Stahov, H. Clement and G.J. Wagner, Evaluation of the pion-nucleon sigma term from CHAOS data, Phys. Lett. B 726 (2013) 685 [arXiv:1211.1148] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].ADSGoogle Scholar
  47. [47]
    QCDSF collaboration, G.S. Bali et al., Strangeness contribution to the proton spin from lattice QCD, Phys. Rev. Lett. 108 (2012) 222001 [arXiv:1112.3354] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    R. Ruiz de Austri and C. Pérez de los Heros, Impact of nucleon matrix element uncertainties on the interpretation of direct and indirect dark matter search results, JCAP 11 (2013) 049 [arXiv:1307.6668] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    LEP Electroweak Working Group webpage,
  50. [50]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  51. [51]
    LHCb collaboration, Measurement of the \( {B}_s^0-{\overline{B}}_s^0 \) oscillation frequency Δm s in B s0 → D s(3)π decays, Phys. Lett. B 709 (2012) 177 [arXiv:1112.4311] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CDF collaboration, A. Abulencia et al., Observation of \( {B}_s^0-{\overline{B}}_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    F. Mahmoudi, S. Neshatpour and J. Orloff, Supersymmetric constraints from B sμ + μ and BK * μ + μ observables, JHEP 08 (2012) 092 [arXiv:1205.1845] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    LHCb collaboration, First evidence for the decay B s0 → μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    CMS collaboration, Measurement of the B sμ + μ branching fraction and search for B 0μ + μ with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    LHCb collaboration, Measurement of the B s0 → μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    A. Arbey, M. Battaglia, F. Mahmoudi and D. Martinez Santos, Supersymmetry confronts B sμ + μ : present and future status, Phys. Rev. D 87 (2013) 035026 [arXiv:1212.4887] [INSPIRE].ADSGoogle Scholar
  58. [58]
    BaBar collaboration, B. Aubert et al., Measurement of branching fractions and CP and isospin asymmetries in BK * γ, arXiv:0808.1915 [INSPIRE].
  59. [59]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    BELLE collaboration, M. Nakao et al., Measurement of the BK * γ branching fractions and asymmetries, Phys. Rev. D 69 (2004) 112001 [hep-ex/0402042] [INSPIRE].ADSGoogle Scholar
  61. [61]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
  62. [62]
    G. Bertone, K. Kong, R.R. de Austri and R. Trotta, Global fits of the minimal universal extra dimensions scenario, Phys. Rev. D 83 (2011) 036008 [arXiv:1010.2023] [INSPIRE].ADSGoogle Scholar
  63. [63]
    G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri and R. Trotta, Identification of dark matter particles with LHC and direct detection data, Phys. Rev. D 82 (2010) 055008 [arXiv:1005.4280] [INSPIRE].ADSGoogle Scholar
  64. [64]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    J. Menendez, D. Gazit and A. Schwenk, Spin-dependent WIMP scattering off nuclei, Phys. Rev. D 86 (2012) 103511 [arXiv:1208.1094] [INSPIRE].ADSGoogle Scholar
  67. [67]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M Z2), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  69. [69]
    BaBar collaboration, B. Aubert et al., Observation of the semileptonic decays \( B\to {D}^{*}{\tau}^{-}{\overline{\nu}}_{\tau } \) and evidence for \( B\to D{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 100 (2008) 021801 [arXiv:0709.1698] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    M. Antonelli et al., An evaluation of |V us| and precise tests of the standard model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).
  72. [72]
    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS, ATL-PHYS-PUB-2012-001, CERN, Geneva Switzerland (2012).
  73. [73]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001, CERN, Geneva Switzerland (2013).
  75. [75]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003, CERN, Geneva Switzerland (2013).
  76. [76]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4ℓ in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002, CERN, Geneva Switzerland (2013).
  77. [77]
    CMS collaboration, Search for the standard model Higgs boson decaying to τ pairs in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-004, CERN, Geneva Switzerland (2013).
  78. [78]
    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044, CERN, Geneva Switzerland (2012).
  79. [79]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].ADSGoogle Scholar
  80. [80]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].ADSGoogle Scholar
  81. [81]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    ATLAS collaboration, ATLAS Monte Carlo tunes for M C09, ATL-PHYS-PUB-2010-002, CERN, Geneva Switzerland (2010).
  83. [83]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].CrossRefADSGoogle Scholar
  84. [84]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].CrossRefADSGoogle Scholar
  85. [85]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  86. [86]
    W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].CrossRefADSGoogle Scholar
  87. [87]
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].CrossRefADSGoogle Scholar
  88. [88]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].CrossRefADSGoogle Scholar
  89. [89]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
  90. [90]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].CrossRefGoogle Scholar
  91. [91]
    R. Ruiz de Austri et al., Profile likelihood maps of the MSSM-15 including LHC run 1 results, in preparation.Google Scholar
  92. [92]
    Joint SUSY working group webpage,
  93. [93]
    M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs LHC in supersymmetric models, JHEP 01 (2014) 123 [arXiv:1303.4256] [INSPIRE].CrossRefGoogle Scholar
  94. [94]
    S. Descotes-Genon, D. Ghosh, J. Matias and M. Ramon, Exploring new physics in the C7-C7′ plane, JHEP 06 (2011) 099 [arXiv:1104.3342] [INSPIRE].CrossRefADSGoogle Scholar
  95. [95]
    W. Altmannshofer and D.M. Straub, New physics in BK * μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].CrossRefADSGoogle Scholar
  96. [96]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].ADSGoogle Scholar
  97. [97]
    D0 collaboration, M. Shamim, Searches for squarks and gluinos with D0 detector, arXiv:0710.2897 [INSPIRE].
  98. [98]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].CrossRefADSGoogle Scholar
  99. [99]
    G. Degrassi, P. Gambino and P. Slavich, QCD corrections to radiative B decays in the MSSM with minimal flavor violation, Phys. Lett. B 635 (2006) 335 [hep-ph/0601135] [INSPIRE].CrossRefADSGoogle Scholar
  100. [100]
    C. Bobeth, A.J. Buras and T. Ewerth, \( \overline{B}\to {X}_s{\ell}^{+}{\ell}^{-} \) in the MSSM at NNLO, Nucl. Phys. B 713 (2005) 522 [hep-ph/0409293] [INSPIRE].CrossRefADSGoogle Scholar
  101. [101]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].CrossRefADSGoogle Scholar
  102. [102]
    M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].ADSGoogle Scholar
  103. [103]
    V. Mandic, A. Pierce, P. Gondolo and H. Murayama, The lower bound on the neutralino nucleon cross-section, hep-ph/0008022 [INSPIRE].
  104. [104]
    S. Profumo and C.E. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev. D 69 (2004) 115009 [hep-ph/0402208] [INSPIRE].ADSGoogle Scholar
  105. [105]
    H.E. Haber et al., SUSY QCD corrections to the MSSM \( {h}^0b\overline{b} \) vertex in the decoupling limit, Phys. Rev. D 63 (2001) 055004 [hep-ph/0007006] [INSPIRE].ADSGoogle Scholar
  106. [106]
    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS, ATL-PHYS-PUB-2012-001, CERN, Geneva Switzerland (2012).
  107. [107]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • C. Strege
    • 1
  • G. Bertone
    • 2
  • G. J. Besjes
    • 3
    • 4
  • S. Caron
    • 3
    • 4
  • R. Ruiz de Austri
    • 5
  • A. Strubig
    • 3
    • 4
  • R. Trotta
    • 1
  1. 1.Astrophysics Group, Imperial Centre for Inference and Cosmology, Imperial College London, Blackett LaboratoryLondonU.K.
  2. 2.GRAPPA Center of ExcellenceUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Experimental High Energy Physics, IMAPP, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  4. 4.NikhefAmsterdamThe Netherlands
  5. 5.Instituto de Física CorpuscularUniversitat de València-CSICValenciaSpain

Personalised recommendations