Skip to main content
Log in

(S)QCD on \( {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} \): screening of Polyakov loop by fundamental quarks and the demise of semi-classics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently, it was argued that the thermal deconfinement transition in pure Yang-Mills theory is continuously connected to a quantum phase transition in softly-broken \( \mathcal{N}=1 \) supersymmetric pure YM theory on \( {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} \). The transition is semiclassically calculable at small \( {{\mathbb{S}}^1} \) size L, occurs as the soft mass m soft and L vary, and is driven by a competition between perturbative effects and nonperturbative topological molecules. These are correlated instanton-antiinstanton tunneling events whose constituents are monopole-instantons “bound” by attractive long-range forces. The mechanism driving the transition is universal for all simple gauge groups, with or without a center, such as SU(N c ) or G 2. Here, we consider theories with fundamental quarks. We examine the role topological objects play in determining the fate of the (exact or approximate) center-symmetry in SU(2) supersymmetric QCD (SQCD) with fundamental flavors, with or without soft-breaking terms. In theories whose large-m soft limit is thermal nonsupersymmetric QCD with massive quarks, we find a crossover of the Polyakov loop, from approximately center-symmetric at small \( \frac{1}{L} \) to maximally center-broken at larger \( \frac{1}{L} \) , as seen in lattice thermal QCD with massive dynamical quarks and \( T=\frac{1}{L} \). We argue that in all calculable cases, including SQCD with exact center symmetry, quarks deform instanton-monopoles by their quantum fluctuations and do not contribute to their binding. The semiclassical approximation and the molecular picture of the vacuum fail, upon decreasing the quark mass, precisely when quarks would begin mediating a long-range attractive force between monopole-instantons, calling for a dual description of the resulting strong-coupling theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R.D. Pisarski, Tests of the Polyakov loops model, Nucl. Phys. A 702 (2002) 151 [hep-ph/0112037] [INSPIRE].

    Article  ADS  Google Scholar 

  3. K. Fukushima, Chiral effective model with the Polyakov loop, Phys. Lett. B 591 (2004) 277 [hep-ph/0310121] [INSPIRE].

    Article  ADS  Google Scholar 

  4. C. Ratti, M.A. Thaler and W. Weise, Phases of QCD: lattice thermodynamics and a field theoretical model, Phys. Rev. D 73 (2006) 014019 [hep-ph/0506234] [INSPIRE].

    ADS  Google Scholar 

  5. D. Diakonov, C. Gattringer and H.-P. Schadler, Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory, JHEP 08 (2012) 128 [arXiv:1205.4768] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Greensite, The potential of the effective Polyakov line action from the underlying lattice gauge theory, Phys. Rev. D 86 (2012) 114507 [arXiv:1209.5697] [INSPIRE].

    ADS  Google Scholar 

  7. L.M. Haas, R. Stiele, J. Braun, J.M. Pawlowski and J. Schaffner-Bielich, Improved Polyakov-loop potential for effective models from functional calculations, Phys. Rev. D 87 (2013) 076004 [arXiv:1302.1993] [INSPIRE].

    ADS  Google Scholar 

  8. O. Aharony, J. Marsano and M. Van Raamsdonk, Two loop partition function for large-N pure Yang-Mills theory on a small S 3, Phys. Rev. D 74 (2006) 105012 [hep-th/0608156] [INSPIRE].

    ADS  Google Scholar 

  9. M.M. Anber, S. Collier and E. Poppitz, The SU(3)/Z 3 QCD adj deconfinement transition via the gauge theory/affineXY-model duality, JHEP 01 (2013) 126 [arXiv:1211.2824] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. N.M. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559 (1999) 123 [hep-th/9905015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  12. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Ünsal, Magnetic bion condensation: a new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].

    ADS  Google Scholar 

  14. A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Poppitz and M. Ünsal, Seiberg-Witten andPolyakov-likemagnetic bion confinements are continuously connected, JHEP 07 (2011) 082 [arXiv:1105.3969] [INSPIRE].

    Article  ADS  Google Scholar 

  16. E. Poppitz, T. Schäfer and M. Ünsal, Continuity, deconfinement and (super) Yang-Mills theory, JHEP 10 (2012) 115 [arXiv:1205.0290] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Poppitz, T. Schäfer and M. Ünsal, Universal mechanism of (semi-classical) deconfinement and theta-dependence for all simple groups, JHEP 03 (2013) 087 [arXiv:1212.1238] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063 [arXiv:1206.1890] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G.V. Dunne and M. Ünsal, Resurgence and trans-series in quantum field theory: the CP N−1 model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G.V. Dunne and M. Ünsal, Continuity and Resurgence: towards a continuum definition of the CP N−1 model, Phys. Rev. D 87 (2013) 025015 [arXiv:1210.3646] [INSPIRE].

    ADS  Google Scholar 

  22. M. Ünsal and L.G. Yaffe, Large-N volume independence in conformal and confining gauge theories, JHEP 08 (2010) 030 [arXiv:1006.2101] [INSPIRE].

    Article  Google Scholar 

  23. U.M. Heller and F. Karsch, Finite temperature SU(2) lattice gauge theory with dynamical fermions, Nucl. Phys. B 258 (1985) 29 [INSPIRE].

    Article  ADS  Google Scholar 

  24. K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys. B 533 (1998) 627 [hep-th/9805168] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M.M. Anber and E. Poppitz, Microscopic structure of magnetic bions, JHEP 06 (2011) 136 [arXiv:1105.0940] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  28. B. Lucini and M. Panero, SU(N) gauge theories at large-N, Phys. Rept. 526 (2013) 93 [arXiv:1210.4997] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Ünsal, Theta dependence, sign problems and topological interference, Phys. Rev. D 86 (2012) 105012 [arXiv:1201.6426] [INSPIRE].

    ADS  Google Scholar 

  30. A. Parnachev and A.R. Zhitnitsky, Phase transitions, theta behavior and instantons in QCD and its holographic model, Phys. Rev. D 78 (2008) 125002 [arXiv:0806.1736] [INSPIRE].

    ADS  Google Scholar 

  31. E. Thomas and A.R. Zhitnitsky, Topological susceptibility and contact term in QCD. A toy model, Phys. Rev. D 85 (2012) 044039 [arXiv:1109.2608] [INSPIRE].

    ADS  Google Scholar 

  32. M.M. Anber, θ dependence of the deconfining phase transition in pure SU(N c ) Yang-Mills theories, arXiv:1302.2641 [INSPIRE].

  33. M. D’Elia and F. Negro, θ dependence of the deconfinement temperature in Yang-Mills theories, Phys. Rev. Lett. 109 (2012) 072001 [arXiv:1205.0538] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. D’Elia and F. Negro, On the phase diagram of Yang-Mills theories in the presence of a theta therm, Phys. Rev. D 88 (2013) 034503 [arXiv:1306.2919] [INSPIRE].

    ADS  Google Scholar 

  35. E. Shuryak and T. Sulejmanpasic, Holonomy potential and confinement from a simple model of the gauge topology, arXiv:1305.0796 [INSPIRE].

  36. M. Pepe and U.-J. Wiese, Exceptional deconfinement in G 2 gauge theory, Nucl. Phys. B 768 (2007) 21 [hep-lat/0610076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Cossu, M. D’Elia, A. Di Giacomo, B. Lucini and C. Pica, G 2 gauge theory at finite temperature, JHEP 10 (2007) 100 [arXiv:0709.0669] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H.-S. Chen and X.-Q. Luo, Phase diagram of QCD at finite temperature and chemical potential from lattice simulations with dynamical Wilson quarks, Phys. Rev. D 72 (2005) 034504 [hep-lat/0411023] [INSPIRE].

    ADS  Google Scholar 

  39. E. Poppitz and M. Ünsal, Index theorem for topological excitations on R 3 × S 1 and Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].

    Article  ADS  Google Scholar 

  40. O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3D dualities from 4D dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Beasley and E. Witten, New instanton effects in supersymmetric QCD, JHEP 01 (2005) 056 [hep-th/0409149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. K. Intriligator and N. Seiberg, Aspects of 3D N = 2 Chern-Simons-matter theories, arXiv:1305.1633 [INSPIRE].

  44. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Yung, Instanton vacuum in supersymmetric QCD, Nucl. Phys. B 297 (1988) 47 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].

    Article  ADS  Google Scholar 

  47. E. Shuryak and T. Sulejmanpasic, The chiral symmetry breaking/restoration in dyonic vacuum, Phys. Rev. D 86 (2012) 036001 [arXiv:1201.5624] [INSPIRE].

    ADS  Google Scholar 

  48. P. Faccioli and E. Shuryak, QCD topology at finite temperature: statistical mechanics of selfdual dyons, Phys. Rev. D 87 (2013) 074009 [arXiv:1301.2523] [INSPIRE].

    ADS  Google Scholar 

  49. S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [INSPIRE].

  50. E. Ponton and E. Poppitz, Casimir energy and radius stabilization in five-dimensional orbifolds and six-dimensional orbifolds, JHEP 06 (2001) 019 [hep-ph/9610451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Poppitz.

Additional information

ArXiv ePrint: 1307.1317

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poppitz, E., Sulejmanpasic, T. (S)QCD on \( {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} \): screening of Polyakov loop by fundamental quarks and the demise of semi-classics. J. High Energ. Phys. 2013, 128 (2013). https://doi.org/10.1007/JHEP09(2013)128

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)128

Keywords

Navigation