Skip to main content

Symmetries in the Standard Model

  • Chapter
  • First Online:
Fundamental Physics and Physics Education Research
  • 1140 Accesses

Abstract

Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last decades in Particle Physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetry requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact Colour SU(3) local gauge symmetry. Parity violation in weak interactions led to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the unifying electroweak SU(2) × U(1) symmetry, which predicted novel weak neutral current interactions. CP violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, that would invalidate the gauge symmetry of the quantum field theory, leads to quark-lepton symmetry. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this standard theory, is the triumph of symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass, without affecting the excellent description of the interactions. This is the Brout–Englert–Higgs mechanism which produces the Higgs boson as a remnant discovered at CERN in 2012. Open present problems are addressed with the search of New Physics Beyond-the-Standard-Model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgement

I would like to thank the organizers of Frontiers of Fundamental Physics 2017 for the opportunity of presenting these ideas and the warm atmosphere of the Conference. This research has been supported by MINECO Project FPA 2014-54459-P, Generalitat Valenciana Project GV PROMETEO/2017/033 and Severo Ochoa Excellence Centre Project SEV 2014-0398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Bernabeu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernabeu, J. (2021). Symmetries in the Standard Model. In: Sidharth, B.G., Murillo, J.C., Michelini, M., Perea, C. (eds) Fundamental Physics and Physics Education Research. Springer, Cham. https://doi.org/10.1007/978-3-030-52923-9_1

Download citation

Publish with us

Policies and ethics