Skip to main content
Log in

An apologia for firewalls

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We address claimed alternatives to the black hole firewall. We show that embedding the interior Hilbert space of an old black hole into the Hilbert space of the early radiation is inconsistent, as is embedding the semi-classical interior of an AdS black hole into any dual CFT Hilbert space. We develop the use of large AdS black holes as a system to sharpen the firewall argument. We also reiterate arguments that unitary non-local theories can avoid firewalls only if the non-localities are suitably dramatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].

  4. S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S.B. Giddings, Models for unitary black hole disintegration, Phys. Rev. D 85 (2012) 044038 [arXiv:1108.2015] [INSPIRE].

    ADS  Google Scholar 

  7. S.B. Giddings, Black holes, quantum information and unitary evolution, Phys. Rev. D 85 (2012) 124063 [arXiv:1201.1037] [INSPIRE].

    ADS  Google Scholar 

  8. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S.B. Giddings and W.M. Nelson, Quantum emission from two-dimensional black holes, Phys. Rev. D 46 (1992) 2486 [hep-th/9204072] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. D.N. Page, Particle emission rates from a black hole. 2. Massless particles from a rotating hole, Phys. Rev. D 14 (1976) 3260 [INSPIRE].

  11. W.H. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett. 49 (1982) 1683 [INSPIRE].

    Article  ADS  Google Scholar 

  12. E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, arXiv:1211.6913 [INSPIRE].

  13. R.D. Sorkin, The statistical mechanics of black hole thermodynamics, gr-qc/9705006 [INSPIRE].

  14. S.L. Braunstein, S. Pirandola and K. Życzkowski, Entangled black holes as ciphers of hidden information, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S.B. Giddings and Y. Shi, Quantum information transfer and models for black hole mechanics, Phys. Rev. D 87 (2013) 064031 [arXiv:1205.4732] [INSPIRE].

    ADS  Google Scholar 

  16. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. W. Unruh and R.M. Wald, Acceleration radiation and generalized second law of thermodynamics, Phys. Rev. D 25 (1982) 942 [INSPIRE].

    ADS  Google Scholar 

  18. W.G. Unruh and R. Wald, How to mine energy from a black hole, Gen. Rel. Grav. 15 (1983) 195.

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Unruh and R.M. Wald, Entropy bounds, acceleration radiation, and the generalized second law, Phys. Rev. D 27 (1983) 2271 [INSPIRE].

    ADS  Google Scholar 

  20. A.R. Brown, Tensile strength and the mining of black holes, arXiv:1207.3342 [INSPIRE].

  21. R. Haag, H. Narnhofer and U. Stein, On quantum field theory in gravitational background, Commun. Math. Phys. 94 (1984) 219 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].

  23. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. R. Sorkin, A simple derivation of stimulated emission by black holes, Class. Quant. Grav. 4 (1987) L149 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Fredenhagen and R. Haag, On the derivation of Hawking radiation associated with the formation of a black hole, Commun. Math. Phys. 127 (1990) 273 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. T. Jacobson, Introduction to quantum fields in curved space-time and the Hawking effect, gr-qc/0308048 [INSPIRE].

  28. S.B. Giddings, Black hole information, unitarity and nonlocality, Phys. Rev. D 74 (2006) 106005 [hep-th/0605196] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S.D. Mathur, Tunneling into fuzzball states, Gen. Rel. Grav. 42 (2010) 113 [arXiv:0805.3716] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [INSPIRE].

  32. J. Preskill, unpublished.

  33. L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. S.B. Giddings, Nonviolent nonlocality, arXiv:1211.7070 [INSPIRE].

  35. S.B. Giddings, Nonviolent information transfer from black holes: a field theory parameterization, Phys. Rev. D 88 (2013) 024018 [arXiv:1302.2613] [INSPIRE].

    ADS  Google Scholar 

  36. D.N. Page, Is black hole evaporation predictable?, Phys. Rev. Lett. 44 (1980) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  37. L. Susskind, unpublished.

  38. Y. Nomura, J. Varela and S.J. Weinberg, Black holes, information and Hilbert space for quantum gravity, Phys. Rev. D 87 (2013) 084050 [arXiv:1210.6348] [INSPIRE].

    ADS  Google Scholar 

  39. S.D.H. Hsu, Macroscopic superpositions and black hole unitarity, arXiv:1302.0451 [INSPIRE].

  40. D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].

  41. R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].

    ADS  Google Scholar 

  42. M. Srednicki, private communication.

  43. Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an infalling observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, arXiv:1211.6767 [INSPIRE].

  45. Y. Nomura and J. Varela, A note on (no) firewalls: the entropy argument, JHEP 07 (2013) 124 [arXiv:1211.7033] [INSPIRE].

    Article  ADS  Google Scholar 

  46. L. Susskind, Black hole complementarity and the Harlow-Hayden conjecture, arXiv:1301.4505 [INSPIRE].

  47. S. Caron-Huot, private communication.

  48. A. Kapustin, Is there life beyond quantum mechanics?, arXiv:1303.6917 [INSPIRE].

  49. D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

    ADS  Google Scholar 

  50. I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].

  52. R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null geodesics, local CFT operators and AdS/CFT for subregions, arXiv:1209.4641 [INSPIRE].

  53. T. Banks and W. Fischler, Holographic space-time does not predict firewalls, arXiv:1208.4757 [INSPIRE].

  54. L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].

  55. S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, arXiv:1210.6996 [INSPIRE].

  56. J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Hossenfelder, Comment on the black hole firewall, arXiv:1210.5317 [INSPIRE].

  58. T. Jacobson, Boundary unitarity without firewalls, arXiv:1212.6944 [INSPIRE].

  59. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  60. M. Berkooz, A. Sever and A. Shomer, ’Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].

  61. S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. E. Witten, SL(2, \( \mathbb{Z} \)) action on three-dimensional conformal field theories with Abelian symmetry, om From fields to strings, volume 2, M. Shifman et al. eds., World Scientific, Singapore (2005), hep-th/0307041 [INSPIRE].

  63. J.V. Rocha, Evaporation of large black holes in AdS: coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. J.V. Rocha, Evaporation of large black holes in AdS: Greybody factor and decay rate, JHEP 08 (2009) 027 [arXiv:0905.4373] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. O. Domenech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent gauge fields in holographic superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. T. Andrade and D. Marolf, AdS/CFT beyond the unitarity bound, JHEP 01 (2012) 049 [arXiv:1105.6337] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. T. Hertog and S. Hollands, Stability in designer gravity, Class. Quant. Grav. 22 (2005) 5323 [hep-th/0508181] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. A.J. Amsel and D. Marolf, Energy bounds in designer gravity, Phys. Rev. D 74 (2006) 064006 [Erratum ibid. D 75 (2007) 029901] [hep-th/0605101] [INSPIRE].

  72. A.J. Amsel, T. Hertog, S. Hollands and D. Marolf, A tale of two superpotentials: stability and instability in designer gravity, Phys. Rev. D 75 (2007) 084008 [Erratum ibid. D 77 (2008) 049903] [hep-th/0701038] [INSPIRE].

  73. T. Faulkner, G.T. Horowitz and M.M. Roberts, New stability results for Einstein scalar gravity, Class. Quant. Grav. 27 (2010) 205007 [arXiv:1006.2387] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. A.J. Amsel and M.M. Roberts, Stability in Einstein-scalar gravity with a logarithmic branch, Phys. Rev. D 85 (2012) 106011 [arXiv:1112.3964] [INSPIRE].

    ADS  Google Scholar 

  75. S.G. Avery and B.D. Chowdhury, Firewalls in AdS/CFT, arXiv:1302.5428 [INSPIRE].

  76. L. Susskind, private communication.

  77. M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].

    Article  ADS  Google Scholar 

  78. M. Hanada, Monte Carlo approach to the string/M-theory, PoS(LATTICE 2012)019 [arXiv:1212.2814] [INSPIRE].

  79. R. Gambini and J. Pullin, Loop quantization of the Schwarzschild black hole, Phys. Rev. Lett. 110 (2013) 211301 [arXiv:1302.5265] [INSPIRE].

    Article  ADS  Google Scholar 

  80. D. Marolf, Black holes, AdS and CFTs, Gen. Rel. Grav. 41 (2009) 903 [arXiv:0810.4886] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  83. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  84. A. Ori, Firewall or smooth horizon?, arXiv:1208.6480 [INSPIRE].

  85. A. Ashtekar and M. Bojowald, Black hole evaporation: a paradigm, Class. Quant. Grav. 22 (2005) 3349 [gr-qc/0504029] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. W. Kim, B.-H. Lee and D.-H. Yeom, Black hole complementarity and firewall in two dimensions, JHEP 05 (2013) 060 [arXiv:1301.5138] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  87. A. Almheiri and J. Sully, An uneventful horizon in two dimensions, arXiv:1307.8149 [INSPIRE].

  88. A. Strominger, Five problems in quantum gravity, Nucl. Phys. Proc. Suppl. 192-193 (2009) 119 [arXiv:0906.1313] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  89. B. Freivogel and L. Susskind, A framework for the landscape, Phys. Rev. D 70 (2004) 126007 [hep-th/0408133] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  90. R. Bousso and L. Susskind, The multiverse interpretation of quantum mechanics, Phys. Rev. D 85 (2012) 045007 [arXiv:1105.3796] [INSPIRE].

    ADS  Google Scholar 

  91. J. Polchinski, unpublished.

  92. L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].

  93. B. Freivogel et al., Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. M. Gary and S.B. Giddings, The flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80 (2009) 046008 [arXiv:0904.3544] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  95. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, arXiv:1306.0533 [INSPIRE].

  96. G. Chapline, E. Hohlfeld, R. Laughlin and D. Santiago, Quantum phase transitions and the breakdown of classical general relativity, Int. J. Mod. Phys. A 18 (2003) 3587 [gr-qc/0012094] [INSPIRE].

    Article  ADS  Google Scholar 

  97. P.O. Mazur and E. Mottola, Gravitational condensate stars: An alternative to black holes, gr-qc/0109035 [INSPIRE].

  98. F. Winterberg, Gamma ray bursters and lorentzian relativity, Z. Naturforsch. 56A (2001) 889.

    Google Scholar 

  99. A. Davidson, Holographic shell model: stack data structure inside black holes, arXiv:1108.2650 [INSPIRE].

  100. A. Giveon and N. Itzhaki, String theory versus black hole complementarity, JHEP 12 (2012) 094 [arXiv:1208.3930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. S.B. Giddings, Black holes and massive remnants, Phys. Rev. D 46 (1992) 1347 [hep-th/9203059] [INSPIRE].

    ADS  Google Scholar 

  102. S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, arXiv:1208.2005 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Polchinski.

Additional information

ArXiv ePrint: 1304.6483v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almheiri, A., Marolf, D., Polchinski, J. et al. An apologia for firewalls. J. High Energ. Phys. 2013, 18 (2013). https://doi.org/10.1007/JHEP09(2013)018

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)018

Keywords

Navigation