Skip to main content

Lovelock Theory, Black Holes and Holography

  • Conference paper
  • First Online:
Progress in Mathematical Relativity, Gravitation and Cosmology

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 60))

Abstract

Lovelock theory is the natural extension of general relativity to higher dimensions. It can be also thought of as a toy model for ghost-free higher curvature gravity. It admits a family of AdS vacua, most (but not all) of them supporting black holes that display interesting features. This provides an appealing arena to explore different holographic aspects in the context of the AdS/CFT correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If λ < 0, there is no a priori lower bound for it and it is clear that Λ + becomes positive.

  2. 2.

    Recall that it is the branch crossing g = 0 with slope Υ′[0] = 1.

  3. 3.

    Other components of the metric fluctuations must be considered as well, but they are irrelevant for our current discussion.

  4. 4.

    Notice that we are splitting time and space indices and, thus, from now on vectors are understood as (d − 2) dimensional objects.

  5. 5.

    The same computation can be carried out with vector and scalar gravitons, and the result in these two cases will be obvious from the present analysis.

References

  1. D. Lovelock: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Lanczos: A Remarkable property of the Riemann-Christoffel tensor in four dimensions. Annals Math. 39, 842 (1938).

    Article  MathSciNet  Google Scholar 

  3. G. Giribet: The large D limit of dimensionally continued gravity. arXiv:1303.1982 [gr-qc].

    Google Scholar 

  4. C. P. Bachas, P. Bain and M. B. Green: Curvature terms in D-brane actions and their M theory origin. JHEP 9905, 011 (1999) [hep-th/9903210].

    Article  MathSciNet  Google Scholar 

  5. Y. Kats and P. Petrov: Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory. JHEP 0901, 044 (2009) [arXiv:0712.0743 [hep-th]].

    Google Scholar 

  6. A. Buchel, R. C. Myers and A. Sinha: Beyond \(\eta /s = 1/4\pi\). JHEP 0903, 084 (2009) [arXiv:0812.2521 [hep-th]].

    Google Scholar 

  7. A. H. Chamseddine: Topological gauge theory of gravity in five-dimensions and all odd dimensions. Phys. Lett. B 233, 291 (1989).

    Article  MathSciNet  Google Scholar 

  8. D. Boulware and S. Deser: String generated gravity models. Phys. Rev. Lett. 55, 2656 (1985).

    Article  Google Scholar 

  9. D. M. Hofman: Higher derivative gravity, causality and positivity of energy in a UV complete QFT. Nucl. Phys. B 823, 174 (2009) [arXiv:0907.1625 [hep-th]].

    Google Scholar 

  10. X. O. Camanho and J. D. Edelstein, A Lovelock black hole bestiary. Class. Quant. Grav. 30, 035009 (2013) [arXiv:1103.3669 [hep-th]].

    Google Scholar 

  11. J. T. Wheeler: Symmetric solutions to the Gauss-Bonnet extended Einstein equations. Nucl. Phys. B 268, 737 (1986).

    Article  Google Scholar 

  12. J. T. Wheeler: Symmetric solutions to the maximally Gauss-bonnet extended Einstein equations. Nucl. Phys. B 273, 732 (1986).

    Article  MATH  Google Scholar 

  13. D. Kastor, S. Ray and J. Traschen: Mass and Free Energy of Lovelock Black Holes. Class. Quant. Grav. 28, 195022 (2011) [arXiv:1106.2764 [hep-th]].

    Google Scholar 

  14. X. O. Camanho, J. D. Edelstein, G. Giribet and A. Gomberoff: New type of phase transition in gravitational theories. Phys. Rev. D 86, 124048 (2012) [arXiv:1204.6737 [hep-th]].

    Google Scholar 

  15. X. O. Camanho, J. D. Edelstein, G. Giribet and A. Gomberoff: Generalized phase transitions in Lovelock theory. To appear (2013).

    Google Scholar 

  16. X. O. Camanho: Phase transitions in general gravity theories. These Proceedings (2013).

    Google Scholar 

  17. J. de Boer, M. Kulaxizi and A. Parnachev: Holographic Lovelock gravities and black holes. JHEP 1006, 008 (2010) [arXiv:0912.1877 [hep-th]].

    Google Scholar 

  18. X. O. Camanho and J. D. Edelstein: Causality in AdS/CFT and Lovelock theory. JHEP 1006, 099 (2010) [arXiv:0912.1944 [hep-th]].

    Google Scholar 

  19. R. -G. Cai: A Note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B 582, 237 (2004) [hep-th/0311240].

    Article  MathSciNet  MATH  Google Scholar 

  20. S. ’i. Nojiri and S. D. Odintsov: Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT. Phys. Lett. B 521, 87 (2001) [Erratum-ibid. B 542, 301 (2002)] [hep-th/0109122].

    Google Scholar 

  21. Y. M. Cho and I. P. Neupane: Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity. Phys. Rev. D 66, 024044 (2002) [hep-th/0202140].

    Article  MathSciNet  Google Scholar 

  22. J. Crisostomo, R. Troncoso and J. Zanelli: Black hole scan. Phys. Rev. D 62, 084013 (2000) [hep-th/0003271].

    Article  MathSciNet  Google Scholar 

  23. T. Jacobson and R. C. Myers: Black hole entropy and higher curvature interactions. Phys. Rev. Lett. 70, 3684 (1993) [hep-th/9305016].

    Article  MathSciNet  MATH  Google Scholar 

  24. R. C. Myers and J. Z. Simon: Black hole thermodynamics in Lovelock gravity. Phys. Rev. D 38, 2434 (1988).

    Article  MathSciNet  Google Scholar 

  25. J. M. Maldacena: The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [hep-th/9711200].

    MathSciNet  MATH  Google Scholar 

  26. S. S. Gubser, I. R. Klebanov and A. M. Polyakov: Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998) [hep-th/9802109].

    Article  MathSciNet  Google Scholar 

  27. E. Witten: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998) [hep-th/9802150].

    MathSciNet  MATH  Google Scholar 

  28. H. Osborn and A. C. Petkou: Implications of conformal invariance in field theories for general dimensions. Annals Phys. 231, 311 (1994) [hep-th/9307010].

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A. Sinha and M. Smolkin: Holographic GB gravity in arbitrary dimensions. JHEP 1003, 111 (2010) [arXiv:0911.4257 [hep-th]].

    Google Scholar 

  30. X. O. Camanho, J. D. Edelstein and M. F. Paulos: Lovelock theories, holography and the fate of the viscosity bound. JHEP 1105, 127 (2011) [arXiv:1010.1682 [hep-th]].

    Google Scholar 

  31. J. Erdmenger and H. Osborn: Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions. Nucl. Phys. B 483, 431 (1997) [hep-th/9605009].

    Article  MathSciNet  MATH  Google Scholar 

  32. D. M. Hofman and J. Maldacena: Conformal collider physics: Energy and charge correlations. JHEP 0805, 012 (2008) [arXiv:0803.1467 [hep-th]].

    Google Scholar 

  33. X. O. Camanho and J. D. Edelstein: Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity. JHEP 1004, 007 (2010) [arXiv:0911.3160 [hep-th]].

    Google Scholar 

  34. M. Kulaxizi and A. Parnachev: Supersymmetry constraints in holographic gravities. Phys. Rev. D 82, 066001 (2010) [arXiv:0912.4244 [hep-th]].

    Google Scholar 

  35. A. Buchel and R. C. Myers: Causality of holographic hydrodynamics. JHEP 0908, 016 (2009) [arXiv:0906.2922 [hep-th]].

    Google Scholar 

  36. J. de Boer, M. Kulaxizi and A. Parnachev: AdS7/CFT6, Gauss-Bonnet gravity, and viscosity bound. JHEP 1003, 087 (2010) [arXiv:0910.5347 [hep-th]].

    Google Scholar 

  37. M. Brigante, H. Liu, R. C. Myers, S. Shenker and S. Yaida: The viscosity bound and causality violation. Phys. Rev. Lett. 100, 191601 (2008) [arXiv:0802.3318 [hep-th]].

    Google Scholar 

  38. M. F. Paulos: Holographic phase space: c-functions and black holes as renormalization group flows. JHEP 1105, 043 (2011) [arXiv:1101.5993 [hep-th]].

    Google Scholar 

  39. R. C. Myers, M. F. Paulos and A. Sinha. Holographic studies of quasi-topological gravity. JHEP 1008, 035 (2010) [arXiv:1004.2055 [hep-th]].

    Google Scholar 

Download references

Acknowledgements

I am very pleased to thank Xián Camanho, Gastón Giribet, Andy Gomberoff and Miguel Paulos for collaboration on this subject and most interesting discussions held throughout the last few years. I would also like to thank the organizers of the Spanish Relativity Meeting in Portugal (ERE2012) for the invitation to present my work and for the nice scientific and friendly atmosphere that prevailed during my stay in Guimarães. This work is supported in part by MICINN and FEDER (grant FPA2011-22594), by Xunta de Galicia (Consellería de Educación and grant PGIDIT10PXIB206075PR), and by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042). The Centro de Estudios Científicos (CECs) is funded by the Chilean Government through the Centers of Excellence Base Financing Program of Conicyt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Edelstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edelstein, J.D. (2014). Lovelock Theory, Black Holes and Holography. In: García-Parrado, A., Mena, F., Moura, F., Vaz, E. (eds) Progress in Mathematical Relativity, Gravitation and Cosmology. Springer Proceedings in Mathematics & Statistics, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40157-2_2

Download citation

Publish with us

Policies and ethics