Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Resilience of the spectral standard model

  • Open Access
  • Published: 25 September 2012
  • volume 2012, Article number: 104 (2012)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Resilience of the spectral standard model
Download PDF
  • Ali H. Chamseddine1,2 &
  • Alain Connes2,3,4 
  • 689 Accesses

  • 68 Citations

  • 38 Altmetric

  • 2 Mentions

  • Explore all metrics

  • Cite this article

Abstract

We show that the inconsistency between the spectral Standard Model and the experimental value of the Higgs mass is resolved by the presence of a real scalar field strongly coupled to the Higgs field. This scalar field was already present in the spectral model and we wrongly neglected it in our previous computations. It was shown recently by several authors, independently of the spectral approach, that such a strongly coupled scalar field stabilizes the Standard Model up to unification scale in spite of the low value of the Higgs mass. In this letter we show that the noncommutative neutral singlet modifies substantially the RG analysis, invalidates our previous prediction of Higgs mass in the range 160-180 Gev, and restores the consistency of the noncommutative geometric model with the low Higgs mass.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A.H. Chamseddine and A. Connes, Why the standard model, J. Geom. Phys. 58 (2008) 38 [arXiv:0706.3688] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A.H. Chamseddine and A. Connes, Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I, Fortsch. Phys. 58 (2010) 553 [arXiv:1004.0464] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  6. O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    ADS  Google Scholar 

  7. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, arXiv:1205.2893 [INSPIRE].

  8. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    Article  ADS  Google Scholar 

  9. O. Lebedev and H.M. Lee, Higgs portal inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].

    ADS  Google Scholar 

  12. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  14. A.H. Chamseddine, Noncommutative geometry as the key to unlock the secrets of space-time, in Quanta of math E. Blanchard et al. eds., Clay Mathematics Institute/AMS publication, U.S.A. (2010), arXiv:0901.0577 [INSPIRE].

    Google Scholar 

  15. K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A.H. Chamseddine and A. Connes, Scale invariance in the spectral action, J. Math. Phys. 47 (2006) 063504 [hep-th/0512169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Google Scholar 

  19. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut, Lebanon

    Ali H. Chamseddine

  2. Institut des Hautes Études Scientifiques, Le Bois-Marie 35, route de Chartres, 91440, Bures-sur-Yvette, France

    Ali H. Chamseddine & Alain Connes

  3. College de France, 3 rue Ulm, F75005, Paris, France

    Alain Connes

  4. Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH, 43210, U.S.A.

    Alain Connes

Authors
  1. Ali H. Chamseddine
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alain Connes
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ali H. Chamseddine.

Additional information

ArXiv ePrint: 1208.1030

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chamseddine, A.H., Connes, A. Resilience of the spectral standard model. J. High Energ. Phys. 2012, 104 (2012). https://doi.org/10.1007/JHEP09(2012)104

Download citation

  • Received: 09 August 2012

  • Accepted: 30 August 2012

  • Published: 25 September 2012

  • DOI: https://doi.org/10.1007/JHEP09(2012)104

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • GUT
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature