Skip to main content

Resilience of the spectral standard model

Abstract

We show that the inconsistency between the spectral Standard Model and the experimental value of the Higgs mass is resolved by the presence of a real scalar field strongly coupled to the Higgs field. This scalar field was already present in the spectral model and we wrongly neglected it in our previous computations. It was shown recently by several authors, independently of the spectral approach, that such a strongly coupled scalar field stabilizes the Standard Model up to unification scale in spite of the low value of the Higgs mass. In this letter we show that the noncommutative neutral singlet modifies substantially the RG analysis, invalidates our previous prediction of Higgs mass in the range 160-180 Gev, and restores the consistency of the noncommutative geometric model with the low Higgs mass.

References

  1. A.H. Chamseddine and A. Connes, Why the standard model, J. Geom. Phys. 58 (2008) 38 [arXiv:0706.3688] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. A.H. Chamseddine and A. Connes, Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I, Fortsch. Phys. 58 (2010) 553 [arXiv:1004.0464] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  3. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  4. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Article  Google Scholar 

  5. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    ADS  Article  Google Scholar 

  6. O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    ADS  Google Scholar 

  7. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, arXiv:1205.2893 [INSPIRE].

  8. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    ADS  Article  Google Scholar 

  9. O. Lebedev and H.M. Lee, Higgs portal inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].

    ADS  Article  Google Scholar 

  10. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    ADS  Article  Google Scholar 

  11. M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].

    ADS  Google Scholar 

  12. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    ADS  Article  Google Scholar 

  13. A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  14. A.H. Chamseddine, Noncommutative geometry as the key to unlock the secrets of space-time, in Quanta of math E. Blanchard et al. eds., Clay Mathematics Institute/AMS publication, U.S.A. (2010), arXiv:0901.0577 [INSPIRE].

    Google Scholar 

  15. K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    ADS  Article  Google Scholar 

  16. A.H. Chamseddine and A. Connes, Scale invariance in the spectral action, J. Math. Phys. 47 (2006) 063504 [hep-th/0512169] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  17. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  18. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    ADS  Google Scholar 

  19. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  20. G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali H. Chamseddine.

Additional information

ArXiv ePrint: 1208.1030

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chamseddine, A.H., Connes, A. Resilience of the spectral standard model. J. High Energ. Phys. 2012, 104 (2012). https://doi.org/10.1007/JHEP09(2012)104

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)104

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • GUT