Skip to main content
Log in

Correlations in Hawking radiation and the infall problem

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

It is sometimes believed that small quantum gravity effects can encode information as ‘delicate correlations’ in Hawking radiation, thus saving unitarity while maintaining a semi classical horizon. A recently derived inequality showed that this belief is incorrect: one must have order unity corrections to low energy evolution at the horizon (i.e. fuzzballs) to remove entanglement between radiation and the hole. In this paper we take several models of ‘small corrections’ and compute the entanglement entropy numerically; in each case this entanglement is seen to monotonically grow, in agreement with the general inequality. We also construct a model of ‘burning paper’, where the entanglement is found to rise and then return to zero, in agreement with the general arguments of Page. We then note that the fuzzball structure of string microstates offers a version of ‘complementarity’. Low energy evolution is modified by order unity, resolving the information problem, while for high energy infalling modes (E ≫ kT) we may be able to replace correlators by their ensemble averaged values. Israel (and others) have suggested that this ensemble sum can be represented in the thermo-field-dynamics language as an entangled sum over two copies of the system, giving the two sides of the extended black hole diagram. Thus high energy correlators in a microstate may be approximated by correlators in a spacetime with horizons, with the ensemble sum over microstates acting like the ‘sewing’ prescription of conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  3. W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [SPIRES].

    Article  ADS  Google Scholar 

  4. B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971) 331 [SPIRES].

    Article  ADS  Google Scholar 

  5. R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields, Phys. Rev. D 5 (1972) 2439 [SPIRES].

    ADS  Google Scholar 

  6. D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Ashtekar and M. Bojowald, Black hole evaporation: a paradigm, Class. Quant. Grav. 22 (2005) 3349 [gr-qc/0504029] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. J.B. Hartle, Generalized quantum theory in evaporating black hole spacetimes, gr-qc/9705022 [SPIRES].

  9. H. Nikolic, Resolving the black-hole information paradox by treating time on an equal footing with space, Phys. Lett. B 678 (2009) 218 [arXiv:0905.0538] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  10. C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Dhar, G. Mandal and S.R. Wadia, Absorption vs decay of black holes in string theory and T-symmetry, Phys. Lett. B 388 (1996) 51 [hep-th/9605234] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. S.R. Das and S.D. Mathur, Comparing decay rates for black holes and D-branes, Nucl. Phys. B 478 (1996) 561 [hep-th/9606185] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. S.R. Das and S.D. Mathur, Interactions involving D-branes, Nucl. Phys. B 482 (1996) 153 [hep-th/9607149] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. J.M. Maldacena and A. Strominger, Black hole greybody factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  15. S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. S.D. Mathur, The information paradox and the infall problem, Class. Quant. Grav. 28 (2011) 125010 [arXiv:1012.2101] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  19. H. Umezawa, H. Matsumoto and M. Tachiki, Thermo field dynamics and condensed states, North-Holland, Amsterdam The Netherlands (1982) [SPIRES].

    Google Scholar 

  20. J.M. Maldacena, Eternal black holes in Anti-de-Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [SPIRES].

  22. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [ arXiv:1005.3035] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  23. G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [SPIRES].

  25. G. ’t Hooft, The scattering matrix approach for the quantum black hole: an overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  28. L. Susskind, String theory and the principles of black hole complementarity, Phys. Rev. Lett. 71 (1993) 2367 [hep-th/9307168] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  30. S.B. Giddings and W.M. Nelson, Quantum emission from two-dimensional black holes, Phys. Rev. D 46 (1992) 2486 [hep-th/9204072] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  31. O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  32. O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett. 88 (2002) 211303 [hep-th/0202072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. S.D. Mathur, The quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures, arXiv:0810.4525 [SPIRES].

  36. O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [SPIRES].

  37. I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054 [hep-th/0404006] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. I. Bena and N.P. Warner, One ring to rule them all… …and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  43. V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  44. I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  45. P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  48. V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  50. J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  51. I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  52. I. Bena, N. Bobev and N.P. Warner, Bubbles on manifolds with a U(1) isometry, JHEP 08 (2007) 004 [arXiv:0705.3641] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  53. E.G. Gimon and T.S. Levi, Black ring deconstruction, JHEP 04 (2008) 098 [arXiv:0706.3394] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  54. I. Bena, C.-W. Wang and N.P. Warner, Plumbing the abyss: black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Giusto, S.F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK system, JHEP 12 (2007) 065 [arXiv:0708.3845] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  56. V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  57. V. Cardoso, O.J.C. Dias, J.L. Hovdebo and R.C. Myers, Instability of non-supersymmetric smooth geometries, Phys. Rev. D 73 (2006) 064031 [hep-th/0512277] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  58. B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  59. B.D. Chowdhury and S.D. Mathur, Pair creation in non-extremal fuzzball geometries, Class. Quant. Grav. 25 (2008) 225021 [arXiv:0806.2309] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  60. B.D. Chowdhury and S.D. Mathur, Non-extremal fuzzballs and ergoregion emission, Class. Quant. Grav. 26 (2009) 035006 [arXiv:0810.2951] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  61. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [SPIRES].

    ADS  Google Scholar 

  62. G.W. Gibbons and M.J. Perry, Black holes and thermal Green’s functions, Proc. Roy. Soc. Lond. A 358 (1978) 467 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  63. W.G. Unruh and N. Weiss, Acceleration radiation in interacting field theories, Phys. Rev. D 29 (1984) 1656 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  64. G.T. Horowitz and D. Marolf, A new approach to string cosmology, JHEP 07 (1998) 014 [hep-th/9805207] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  65. V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  66. A. Sen, State operator correspondence and entanglement in AdS 2 /CFT 1, arXiv:1101.4254 [SPIRES].

  67. V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].

    Article  ADS  Google Scholar 

  68. V. Balasubramanian, B. Czech, Y.-H. He, K. Larjo and J. Simon, Typicality, black hole microstates and superconformal field theories, JHEP 03 (2008) 008 [arXiv:0712.2434] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  69. V. Balasubramanian et al., Typicality versus thermality: an analytic distinction, Gen. Rel. Grav. 40 (2008) 1863 [hep-th/0701122] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [SPIRES].

    ADS  Google Scholar 

  71. E.P. Verlinde and H.L. Verlinde, A unitary S matrix and 2D black hole formation and evaporation, Nucl. Phys. B 406 (1993) 43 [hep-th/9302022] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  72. K. Schoutens, H.L. Verlinde and E.P. Verlinde, Black hole evaporation and quantum gravity, hep-th/9401081 [SPIRES].

  73. E.P. Verlinde and H.L. Verlinde, High-energy scattering in quantum gravity, Class. Quant. Grav. 10 (1993) S175 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  74. Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  75. F. Englert and P. Spindel, The hidden horizon and black hole unitarity, JHEP 12 (2010) 065 [arXiv:1009.6190] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  76. S.D. Mathur, Membrane paradigm realized?, Gen. Rel. Grav. 42 (2010) 2331 [Int. J. Mod. Phys. D 19 (2010) 2423] [ arXiv:1005.3555] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  77. T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  78. S.W. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  79. D. Marolf, Unitarity and holography in gravitational physics, Phys. Rev. D 79 (2009) 044010 [arXiv:0808.2842] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  80. D. Marolf, Holographic thought experiments, Phys. Rev. D 79 (2009) 024029 [arXiv:0808.2845] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  81. S.D. Mathur, Tunneling into fuzzball states, Gen. Rel. Grav. 42 (2010) 113 [arXiv:0805.3716] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  82. S.D. Mathur, How fast can a black hole release its information?, Int. J. Mod. Phys. D 18 (2009) 2215 [arXiv:0905.4483] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  83. S.D. Mathur, Black hole size and phase space volumes, arXiv:0706.3884 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir D. Mathur.

Additional information

ArXiv ePrint: 1101.4899

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, S.D., Plumberg, C.J. Correlations in Hawking radiation and the infall problem. J. High Energ. Phys. 2011, 93 (2011). https://doi.org/10.1007/JHEP09(2011)093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)093

Keywords

Navigation