Skip to main content
Log in

Typicality versus thermality: an analytic distinction

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In systems with a large degeneracy of states such as black holes, one expects that the average value of probe correlation functions will be well approximated by the thermal ensemble. To understand how correlation functions in individual microstates differ from the canonical ensemble average and from each other, we study the variances in correlators. Using general statistical considerations, we show that the variance between microstates will be exponentially suppressed in the entropy. However, by exploiting the analytic properties of correlation functions we argue that these variances are amplified in imaginary time, thereby distinguishing pure states from the thermal density matrix. We demonstrate our general results in specific examples and argue that our results apply to the microstates of black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lunin, O., Mathur, S.D.: AdS/CFT duality and the black hole information paradox. Nucl. Phys. B 623, 342 (2002) [arXiv:hep-th/0109154]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Mathur, S.D.: The fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793 (2005) [arXiv:hep-th/0502050]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Lin, H., Lunin, O., Maldacena, J.M.: Bubbling AdS space and 1/2 BPS geometries. JHEP 0410, 025 (2004) [arXiv:hep-th/0409174]

    Article  MathSciNet  ADS  Google Scholar 

  4. Balasubramanian, V., Boer, J., Jejjala, V., Simon, J.: The library of Babel: on the origin of gravitational thermodynamics. JHEP 0512, 006 (2005) [arXiv:hep-th/0508023]

    ADS  Google Scholar 

  5. Balasubramanian, V., Jejjala, V., Simon, J.: The library of Babel. Int. J. Mod. Phys. D 14, 2181 (2005) [arXiv:hep-th/0505123]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bena, I., Warner, N.P.: Bubbling supertubes and foaming black holes. Phys. Rev. D 74, 066001 (2006) [arXiv:hep-th/0505166]

    Article  MathSciNet  ADS  Google Scholar 

  7. Berglund, P., Gimon, E.G., Levi, T.S.: Supergravity microstates for BPS black holes and black rings. JHEP 0606, 007 (2006) [arXiv:hep-th/0505167]

    Article  MathSciNet  ADS  Google Scholar 

  8. Bena, I., Wang, C.W., Warner, N.P.: The foaming three-charge black hole [arXiv:hep-th/0604110]

  9. Balasubramanian, V., Gimon, E.G., Levi, T.S.: Four dimensional black hole microstates: from D-branes to spacetime foam [arXiv:hep-th/0606118]

  10. Bena, I., Wang, C.W., Warner, N.P.: Mergers and typical black hole microstates. JHEP 0611, 042 (2006) [arXiv:hep-th/0608217]

    Article  MathSciNet  ADS  Google Scholar 

  11. Balasubramanian, V., Marolf, D., Rozali, M.: Information recovery from black holes [arXiv:hep-th/0604045]

  12. Balasubramanian, V., Czech, B., Larjo, K., Simon, J.: Integrability vs. information loss: a simple example. JHEP 0611, 001 (2006) [arXiv:hep-th/0602263]

    Article  MathSciNet  ADS  Google Scholar 

  13. Alday, L.F., de Boer, J., Messamah, I., The gravitational description of coarse grained microstates [arXiv:hep-th/0607222]

  14. Berenstein, D.: Large N BPS states and emergent quantum gravity. JHEP 0601, 125 (2006) [arXiv:hep-th/0507203]

    Article  MathSciNet  ADS  Google Scholar 

  15. Vazquez, S.E.: Reconstructing 1/2 BPS space–time metrics from matrix models and spin chains [arXiv:hep-th/0612014]

  16. Kraus, P., Ooguri, H., Shenker, S.: Inside the horizon with AdS/CFT. Phys. Rev. D 67, 124022 (2003) [arXiv:hep-th/0212277]

    Article  MathSciNet  ADS  Google Scholar 

  17. Fidkowski, L., Hubeny, V., Kleban, M., Shenker, S.: The black hole singularity in AdS/CFT. JHEP 0402, 014 (2004) [arXiv:hep-th/0306170]

    Article  MathSciNet  ADS  Google Scholar 

  18. Levi, T.S., Ross, S.F.: Holography beyond the horizon and cosmic censorship. Phys. Rev. D 68, 044005 (2003) [arXiv:hep-th/0304150]

    Article  MathSciNet  ADS  Google Scholar 

  19. Balasubramanian, V., Levi, T.S.: Beyond the veil: inner horizon instability and holography. Phys. Rev. D 70, 106005 (2004) [arXiv:hep-th/0405048]

    Article  MathSciNet  ADS  Google Scholar 

  20. Brecher, D., He, J., Rozali, M.: On charged black holes in anti-de Sitter space. JHEP 0504, 004 (2005) [arXiv:hep-th/0410214]

    Article  MathSciNet  ADS  Google Scholar 

  21. Festuccia, G., Liu, H.: Excursions beyond the horizon: Black hole singularities in Yang–Mills theories. I. JHEP 0604, 044 (2006) [arXiv:hep-th/0506202]

    Article  MathSciNet  ADS  Google Scholar 

  22. Freivogel, B., Hubeny, V.E., Maloney, A., Myers, R., Rangamani, M., Shenker, S.: Inflation in AdS/CFT. JHEP 0603, 007 (2006) [arXiv:hep-th/0510046]

    Article  MathSciNet  ADS  Google Scholar 

  23. Maeda, K., Natsuume, M., Okamura, T.: Extracting information behind the veil of horizon. Phys. Rev. D 74, 046010 (2006) [arXiv:hep-th/0605224]

    Article  MathSciNet  ADS  Google Scholar 

  24. Hamilton, A., Kabat, D., Lifschytz, G., Lowe, D.A.: Local bulk operators in AdS/CFT: a holographic description of the black hole interior [arXiv:hep-th/0612053]

  25. Maldacena, J.M.: Eternal black holes in Anti-de-Sitter. JHEP 0304, 021 (2003) [arXiv:hep-th/0106112]

    Article  MathSciNet  ADS  Google Scholar 

  26. Balasubramanian, V., Kraus, P., Shigemori, M.: Massless black holes and black rings as effective geometries of the D1–D5 system. Class. Quant. Grav. 22, 4803 (2005) [arXiv:hep-th/0508110]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Elvang, H., Emparan, R., Mateos, D., Reall, H.S.: Supersymmetric black rings and three-charge supertubes. Phys. Rev. D 71, 024033 (2005) [arXiv:hep-th/0408120]

    Article  MathSciNet  ADS  Google Scholar 

  28. Alday, L.F., de Boer, J., Messamah, I.: What is the dual of a dipole?. Nucl. Phys. B 746, 29 (2006) [arXiv:hep-th/0511246]

    Article  MATH  ADS  Google Scholar 

  29. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  30. Wald, R.M.: The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001) [arXiv:gr-qc/9912119]

    Google Scholar 

  31. Skenderis, K., Taylor, M.: Fuzzball solutions and D1–D5 microstates [arXiv:hep-th/0609154]

  32. Lunin, O., Mathur, S.D.: Correlation functions for M(N)/S(N) orbifolds. Commun. Math. Phys. 219, 399 (2001) [arXiv:hep-th/0006196]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Lunin, O., Mathur, S.D.: Three-point functions for M(N)/S(N) orbifolds with N = 4 supersymmetry. Commun. Math. Phys. 227, 385 (2002) [arXiv:hep-th/0103169]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Dirichlet, G.L.: Sur l’usage des séries infinies dans la théorie des nombres. J. Reine Angew. Math. 18, 259–274 (1838)

    MATH  Google Scholar 

  35. Festuccia, G., Liu, H.: The arrow of time, black holes, and quantum mixing of large N Yang-Mills theories [arXiv:hep-th/0611098]

  36. Hubeny, V.E.: Precursors see inside black holes. Int. J. Mod. Phys. D 12, 1693 (2003) [arXiv:hep-th/0208047]

    Article  MathSciNet  ADS  Google Scholar 

  37. Susskind, L., Toumbas, N.: Wilson loops as precursors. Phys. Rev. D 61, 044001 (2000) [arXiv:hep-th/9909013]

    Article  MathSciNet  ADS  Google Scholar 

  38. Vershik, A.M.: Statistical mechanics of combinatorial partitions, and their limit configurations, Funkts. Anal. Prilozh. 30, No. 2, 19–30 (1996) [English translation: Funct. Anal. Appl. 30, No. 2, 90–105 (1996)]

  39. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)

    Article  Google Scholar 

  40. Paris, M.G.A., Řehéček, J.: Quantum State Estimation. Springer, Berlin (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Larjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, V., Czech, B., Hubeny, V.E. et al. Typicality versus thermality: an analytic distinction. Gen Relativ Gravit 40, 1863–1890 (2008). https://doi.org/10.1007/s10714-008-0606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0606-8

Keywords

Navigation