Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Berry phases, wormholes and factorization in AdS/CFT
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Covariant holographic entanglement negativity for disjoint intervals in $$AdS_3/CFT_2$$ A d S 3 / C F T 2

17 June 2019

Vinay Malvimat, Sayid Mondal, … Gautam Sengupta

Wormholes in Jackiw—Teitelboim Gravity

01 December 2019

D. S. Ageev, I. Ya. Aref’eva & A. V. Lysukhina

Can one hear the shape of a wormhole?

29 September 2022

Stefano Antonini, Petar Simidzija, … Mark Van Raamsdonk

Modular Hamiltonians in flat holography and (W)AdS/WCFT

04 September 2020

Luis Apolo, Hongliang Jiang, … Yuan Zhong

Entanglement phase structure of a holographic BCFT in a black hole background

24 May 2022

Hao Geng, Andreas Karch, … Sanjit Shashi

Holographic teleportation in higher dimensions

29 July 2021

Byoungjoon Ahn, Yongjun Ahn, … Keun-Young Kim

Rényi entropies and area operator from gravity with Hayward term

30 July 2020

Marcelo Botta-Cantcheff, Pedro J. Martinez & Juan F. Zarate

Renormalized holographic entanglement entropy in Lovelock gravity

11 June 2021

Giorgos Anastasiou, Ignacio J. Araya, … Rodrigo Olea

Wormholes and black hole microstates in AdS/CFT

01 September 2021

Jordan Cotler & Kristan Jensen

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 17 August 2022

Berry phases, wormholes and factorization in AdS/CFT

  • Souvik Banerjee1,
  • Moritz Dorband  ORCID: orcid.org/0000-0002-0260-76291,
  • Johanna Erdmenger1,
  • René Meyer1 &
  • …
  • Anna-Lena Weigel1 

Journal of High Energy Physics volume 2022, Article number: 162 (2022) Cite this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A preprint version of the article is available at arXiv.

Abstract

For two-dimensional holographic CFTs, we demonstrate the role of Berry phases for relating the non-factorization of the Hilbert space to the presence of wormholes. The wormholes are characterized by a non-exact symplectic form that gives rise to the Berry phase. For wormholes connecting two spacelike regions in gravitational spacetimes, we find that the non-exactness is linked to a variable appearing in the phase space of the boundary CFT. This variable corresponds to a loop integral in the bulk. Through this loop integral, non-factorization becomes apparent in the dual entangled CFTs. Furthermore, we classify Berry phases in holographic CFTs based on the type of dual bulk diffeomorphism involved. We distinguish between Virasoro, gauge and modular Berry phases, each corresponding to a spacetime wormhole geometry in the bulk. Using kinematic space, we extend a relation between the modular Hamiltonian and the Berry curvature to the finite temperature case. We find that the Berry curvature, given by the Crofton form, characterizes the topological transition of the entanglement entropy in presence of a black hole.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Verlinde, Wormholes in Quantum Mechanics, arXiv:2105.02129 [INSPIRE].

  8. M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A 392 (1984) 45.

    Article  ADS  MathSciNet  Google Scholar 

  9. F.S. Nogueira, S. Banerjee, M. Dorband, R. Meyer, J.v.d. Brink and J. Erdmenger, Geometric phases distinguish entangled states in wormhole quantum mechanics, Phys. Rev. D 105 (2022) L081903 [arXiv:2109.06190] [INSPIRE].

  10. A. Bhattacharyya, L.K. Joshi and B. Sundar, Quantum information scrambling: from holography to quantum simulators, Eur. Phys. J. C 82 (2022) 458 [arXiv:2111.11945] [INSPIRE].

    Article  ADS  Google Scholar 

  11. B. Oblak, Berry Phases on Virasoro Orbits, JHEP 10 (2017) 114 [arXiv:1703.06142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Compère, P. Mao, A. Seraj and M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of AdS3 gravity: holographic vs boundary gravitons, JHEP 01 (2016) 080 [arXiv:1511.06079] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.M. Sheikh-Jabbari and H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS3 geometries, Eur. Phys. J. C 76 (2016) 493 [arXiv:1603.05272] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. de Boer, R. Espíndola, B. Najian, D. Patramanis, J. van der Heijden and C. Zukowski, Virasoro entanglement Berry phases, JHEP 03 (2022) 179 [arXiv:2111.05345] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Henneaux, W. Merbis and A. Ranjbar, Asymptotic dynamics of AdS3 gravity with two asymptotic regions, JHEP 03 (2020) 064 [arXiv:1912.09465] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D.L. Jafferis and D.K. Kolchmeyer, Entanglement Entropy in Jackiw-Teitelboim Gravity, arXiv:1911.10663 [INSPIRE].

  17. H. Verlinde, ER = EPR revisited: On the Entropy of an Einstein-Rosen Bridge, arXiv:2003.13117 [INSPIRE].

  18. B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry Connection for Entangled Subregions in AdS/CFT, Phys. Rev. Lett. 120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].

  19. B. Czech, L. Lamprou and L. Susskind, Entanglement Holonomies, arXiv:1807.04276 [INSPIRE].

  20. B. Czech, J. De Boer, D. Ge and L. Lamprou, A modular sewing kit for entanglement wedges, JHEP 11 (2019) 094 [arXiv:1903.04493] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].

  23. A. Alekseev and S.L. Shatashvili, From geometric quantization to conformal field theory, Commun. Math. Phys. 128 (1990) 197 [INSPIRE].

  24. E. Witten, Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys. 114 (1988) 1 [INSPIRE].

  25. P. Caputa and J.M. Magan, Quantum Computation as Gravity, Phys. Rev. Lett. 122 (2019) 231302 [arXiv:1807.04422] [INSPIRE].

  26. J. Erdmenger, M. Gerbershagen and A.-L. Weigel, Complexity measures from geometric actions on Virasoro and Kac-Moody orbits, JHEP 11 (2020) 003 [arXiv:2004.03619] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Fefferman and C.R. Graham, Conformal invariants, in Élie Cartan et les mathématiques d’aujourd’hui - Lyon, 25-29 juin 1984, in Astérisque. S131 (1985).

  28. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999) 147 [hep-th/9901148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

  31. M.M. Sheikh-Jabbari and H. Yavartanoo, Excitation entanglement entropy in two dimensional conformal field theories, Phys. Rev. D 94 (2016) 126006 [arXiv:1605.00341] [INSPIRE].

  32. J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].

  33. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

  34. G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [INSPIRE].

  36. A. Kundu, Wormholes and holography: an introduction, Eur. Phys. J. C 82 (2022) 447 [arXiv:2110.14958] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Cotler and K. Jensen, A theory of reparameterizations for AdS3 gravity, JHEP 02 (2019) 079 [arXiv:1808.03263] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033 [arXiv:2006.08648] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, JHEP 02 (2020) 177 [arXiv:1804.01081] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].

  41. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. D.L. Jafferis and S.J. Suh, The Gravity Duals of Modular Hamiltonians, JHEP 09 (2016) 068 [arXiv:1412.8465] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. J.J. Bisognano and E.H. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys. 16 (1975) 985 [INSPIRE].

  44. J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].

  45. J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].

  46. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. C.T. Asplund, N. Callebaut and C. Zukowski, Equivalence of Emergent de Sitter Spaces from Conformal Field Theory, JHEP 09 (2016) 154 [arXiv:1604.02687] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. T. Faulkner, M. Li and H. Wang, A modular toolkit for bulk reconstruction, JHEP 04 (2019) 119 [arXiv:1806.10560] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. B. Czech and L. Lamprou, Holographic definition of points and distances, Phys. Rev. D 90 (2014) 106005 [arXiv:1409.4473] [INSPIRE].

  51. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

  52. X. Huang and C.-T. Ma, Berry Curvature and Riemann Curvature in Kinematic Space with Spherical Entangling Surface, Fortsch. Phys. 69 (2021) 2000048 [arXiv:2003.12252] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. T. Hartman and N. Afkhami-Jeddi, Speed Limits for Entanglement, arXiv:1512.02695 [INSPIRE].

  54. Y.O. Nakagawa, G. Sárosi and T. Ugajin, Chaos and relative entropy, JHEP 07 (2018) 002 [arXiv:1805.01051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. D. Blanco, A. Garbarz and G. Pérez-Nadal, Entanglement of a chiral fermion on the torus, JHEP 09 (2019) 076 [arXiv:1906.07057] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. P. Fries and I.A. Reyes, Entanglement Spectrum of Chiral Fermions on the Torus, Phys. Rev. Lett. 123 (2019) 211603 [arXiv:1905.05768] [INSPIRE].

  57. M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].

  58. R. Abt, J. Erdmenger, H. Hinrichsen, C.M. Melby-Thompson, R. Meyer, C. Northe et al., Topological Complexity in AdS3/CFT2, Fortsch. Phys. 66 (2018) 1800034 [arXiv:1710.01327] [INSPIRE].

    Article  ADS  Google Scholar 

  59. R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe, Holographic Subregion Complexity from Kinematic Space, JHEP 01 (2019) 012 [arXiv:1805.10298] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. C. Chowdhury, V. Godet, O. Papadoulaki and S. Raju, Holography from the Wheeler-DeWitt equation, JHEP 03 (2022) 019 [arXiv:2107.14802] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Raju, Failure of the split property in gravity and the information paradox, Class. Quant. Grav. 39 (2022) 064002 [arXiv:2110.05470] [INSPIRE].

  62. S. Leutheusser and H. Liu, Causal connectability between quantum systems and the black hole interior in holographic duality, arXiv:2110.05497 [INSPIRE].

  63. S. Leutheusser and H. Liu, Emergent times in holographic duality, arXiv:2112.12156 [INSPIRE].

  64. E. Witten, Gravity and the Crossed Product, arXiv:2112.12828 [INSPIRE].

  65. R. Emparan, B. Grado-White, D. Marolf and M. Tomasevic, Multi-mouth Traversable Wormholes, JHEP 05 (2021) 032 [arXiv:2012.07821] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. R.F. Penna and C. Zukowski, Kinematic space and the orbit method, JHEP 07 (2019) 045 [arXiv:1812.02176] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics and Astrophysics and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany

    Souvik Banerjee, Moritz Dorband, Johanna Erdmenger, René Meyer & Anna-Lena Weigel

Authors
  1. Souvik Banerjee
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Moritz Dorband
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Johanna Erdmenger
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. René Meyer
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Anna-Lena Weigel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Moritz Dorband.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2202.11717

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Dorband, M., Erdmenger, J. et al. Berry phases, wormholes and factorization in AdS/CFT. J. High Energ. Phys. 2022, 162 (2022). https://doi.org/10.1007/JHEP08(2022)162

Download citation

  • Received: 08 March 2022

  • Revised: 30 May 2022

  • Accepted: 11 July 2022

  • Published: 17 August 2022

  • DOI: https://doi.org/10.1007/JHEP08(2022)162

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Gauge-Gravity Correspondence
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.