Skip to main content
Log in

Wormholes in Jackiw—Teitelboim Gravity

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate various aspects of AdS2 wormholes in Jackiw—Teitelboim gravity and their holographic applications. We first study the AdS2 space in global coordinates traversable by virtue of the presence of pointlike matter violating the dominant energy condition. We calculate the evolution of the entanglement entropy in such a system. We then investigate the construction proposed by Verlinde and colleagues describing states similar to wormholes. These states are called partially entangled thermal states. We propose a construction similar to the geometries of such states using conformal maps of the upper halfplane. We study correlation functions in theories dual to such geometries and also comment on the possible connection between a special type of partially entangled thermal states and violation of replica symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Internat. J. Theor. Phys., 38, 1113–1133 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys., 2, 231–252 (1998); arXiv:hep-th/9711200v3 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B, 428, 105–114 (1998); arXiv:hep-th/9802109v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys., 2, 253–291 (1998); arXiv:hep-th/9802150v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Jackiw, “Lower dimensional gravity,” Nucl. Phys. B, 252, (343–356) (1985).

    Article  ADS  Google Scholar 

  6. C. Teitelboim, “Gravitation and Hamiltonian structure in two spacetime dimensions,” Phys. Lett. B, 126, (41–45) (1983).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. P. Frolov, “Two-dimensional black hole physics,” Phys. Rev. D, 46, (5383–5394) (1992).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. O. Katanaev, W. Kummer, and H. Liebl, “Geometric interpretation and classification of global solutions in generalized dilaton gravity,” Phys. Rev. D, 53, 5609–5628 (1996); arXiv:gr-qc/9511009v1 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. O. Katanaev, “Effective action for scalar fields in two-dimensional gravity,” Ann. Phys., 296, 1–50 (2002); arXiv:gr-qc/0101033v2 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Spradlin and A. Strominger, “Vacuum states for AdS(2) black holes,” JHEP, 9911, (021) (1999); arXiv:hep-th/9904143v2 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Almheiri and J. Polchinski, “Models of AdS2 backreaction and holography,” JHEP, 1511, (014) (2015); arXiv:1402.6334v3 [hep-th] (2014).

    Article  ADS  Google Scholar 

  12. K. Jensen, “Chaos in AdS2 holography,” Phys. Rev. Lett., 117, (111601) (2016); arXiv:1605.06098v3 [hep-th] (2016).

    Article  ADS  Google Scholar 

  13. J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space,” Prog. Theor. Exp. Phys., 2016, 12C104 (2016); arXiv:1606.01857v2 [hep-th] (2016).

    Article  Google Scholar 

  14. J. Engelsoy, T. G. Mertens, and H. Verlinde, “An investigation of AdS2 backreaction and holography,” JHEP, 1607, (139) (2016); arXiv:1606.03438v3 [hep-th] (2016).

    Article  ADS  Google Scholar 

  15. J. Maldacena and X.-L. Qi, “Eternal traversable wormhole,” arXiv:1804.00491v3 [hep-th] (2018).

  16. P. Gao, D. L. Jafferis, and A. C. Wall, “Traversable wormholes via a double trace deformation,” JHEP, 1712, (151) (2017); arXiv:1608.05687v3 [hep-th (2016).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Maldacena, D. Stanford, and Z. Yang, “Diving into traversable wormholes,” Fortsch. Phys., 65, (1700034) (2017); arXiv:1704.05333v1 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Bak, C. Kim, and S.-H. Yi, “Transparentizing black holes to eternal traversable wormholes,” JHEP, 1903, (155) (2019); arXiv:1901.07679v3 [hep-th] (2019).

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Kourkoulou and J. Maldacena, “Pure states in the SYK model and nearly-AdS 2 gravity,” arXiv:1707.02325v2 [hep-th] (2017).

  20. V. V. Belokurov and E. T. Shavgulidze, “Exact solution of the Schwarzian theory,” Phys. Rev. D, 96, (101701) (2017); arXiv:1705.02405v3 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Chen and P. Zhang, “Entanglement entropy of two coupled SYK models and eternal traversable wormhole,” arXiv:1903.10532v2 [hep-th] (2019).

  22. A. Goel, H. T. Lam, G. J. Turiaci, and H. Verlinde, “Expanding the black hole interior: Partially entangled thermal states in SYK,” JHEP, 1902, (156) (2019); arXiv:1807.03916v3 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys. Rev. D, 94, (106002) (2016); arXiv:1604.07818v1 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence,” Phys. Rev. Lett., 96, (181602) (2006); arXiv:hep-th/0603001v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Navarro-Salas and P. Navarro, “AdS2/CFT1 correspondence and near-extremal black hole entropy,” Nucl. Phys. B, 579, 250–266 (2000); arXiv:hep-th/9910076v1 (1999).

    Article  ADS  Google Scholar 

  26. A. Achúcarro and M. E. Ortiz, “Relating black holes in two and three dimensions,” Phys. Rev. D, 48, 3600–3605 (1993); arXiv:hep-th/9304068v1 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  27. V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic entanglement entropy proposal,” JHEP, 0707, (062) (2007); arXiv:0705.0016v3 [hep-th] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Castro and F. Larsen, “Near extremal Kerr entropy from AdS2 quantum gravity,” JHEP, 0912, (037) (2009); arXiv:0908.1121v2 [hep-th] (2009).

    Article  ADS  Google Scholar 

  29. T. Azeyanagi, T. Nishioka, and T. Takayanagi, “Near extremal black hole entropy as entanglement entropy via AdS2/CFT1,” Phys. Rev. D, 77, (064005) (2008); arXiv:0710.2956v4 [hep-th] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  30. N. Callebaut and H. Verlinde, “Entanglement dynamics in 2D CFT with boundary: Entropic origin of JT gravity and Schwarzian QM,” JHEP, 1905, (045) (2019); arXiv:1808.05583v1 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Lin, “Entanglement entropy in Jackiw-Teitelboim gravity,” arXiv:1807.06575v3 [hep-th] (2018).

  32. I. Aref’eva and I. Volovich, “Spontaneous symmetry breaking in fermionic random matrix model,” arXiv: 1902.09970v1 [hep-th] (2019).

  33. I. Aref’eva, M. Khramtsov, M. Tikhanovskaya, and I. Volovich, “Replica-nondiagonal solutions in the SYK model,” arXiv:1811.04831v4 [hep-th] (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. S. Ageev, I. Ya. Aref’eva or A. V. Lysukhina.

Ethics declarations

Conflicts of interest. The authors declare no conflicts of interest.

Additional information

This research is supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (Project No. 18-1-1-80-4).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 201, No. 3, pp. 424–439, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, D.S., Aref’eva, I.Y. & Lysukhina, A.V. Wormholes in Jackiw—Teitelboim Gravity. Theor Math Phys 201, 1779–1792 (2019). https://doi.org/10.1134/S0040577919120092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919120092

Keywords

Navigation