SO(8) supergravity and the magic of machine learning

Abstract

Using de Wit-Nicolai D = 4 \( \mathcal{N} \) = 8 SO(8) supergravity as an example, we show how modern Machine Learning software libraries such as Google’s TensorFlow can be employed to greatly simplify the analysis of high-dimensional scalar sectors of some M-Theory compactifications. We provide detailed information on the location, symmetries, and particle spectra and charges of 192 critical points on the scalar manifold of SO(8) supergravity, including one newly discovered \( \mathcal{N} \) = 1 vacuum with SO(3) residual symmetry, one new potentially stabilizable non-supersymmetric solution, and examples for “Galois conjugate pairs” of solutions, i.e. solution-pairs that share the same gauge group embedding into SO(8) and minimal polynomials for the cosmological constant. Where feasible, we give analytic expressions for solution coordinates and cosmological constants.

As the authors’ aspiration is to present the discussion in a form that is accessible to both the Machine Learning and String Theory communities and allows adopting our methods towards the study of other models, we provide an introductory overview over the relevant Physics as well as Machine Learning concepts. This includes short pedagogical code examples. In particular, we show how to formulate a requirement for residual Supersymmetry as a Machine Learning loss function and effectively guide the numerical search towards supersymmetric critical points. Numerical investigations suggest that there are no further supersymmetric vacua beyond this newly discovered fifth solution.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S.W. Hawking, Is the end in sight for theoretical physics?, Phys. Bull.32 (1981) 15.

    Article  Google Scholar 

  2. [2]

    M. Abadi et al., TensorFlow: a system for large-scale machine learning, talk given at the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16 ), November 2-4, Savannah, U.S.A. (2016).

  3. [3]

    B. de Wit and H. Nicolai, N = 8 supergravity with Local SO(8) × SU(8) invariance, Phys. Lett. B108 (1982) 285 [INSPIRE].

  4. [4]

    B. de Wit and H. Nicolai, Local SO(8) × SU(8) invariance in \( \mathcal{N} \) = 8 supergravity and its implication for superunification, technical report CM-P00062104 (1981).

  5. [5]

    M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett.154B (1985) 268 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. [6]

    https://colab.sandbox.google.com/github/google-research/google-research/blob/master/ m theory/dim4/so8_supergravity_extrema/colab/so8_supergravity.ipynb

  7. [7]

    https://github.com/google-research/google-research/tree/master/m_theory

  8. [8]

    M.J. Duff, The theory formerly known as strings, Sci. Amer.278 (1998) 64 [math/9608117].

    Article  Google Scholar 

  9. [9]

    E. Witten, String theory dynamics in various dimensions, Nucl. Phys.B 443 (1995) 85 [hep-th/9503124] [INSPIRE].

  10. [10]

    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys.B 70 (1974) 39 [INSPIRE].

  11. [11]

    D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress toward a theory of supergravity, Phys. Rev.D 13 (1976) 3214 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. [12]

    S. Deser and B. Zumino, Consistent supergravity, Phys. Lett.B 62 (1976) 335 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. [13]

    Z. Bern et al., Ultraviolet behavior of \( \mathcal{N} \)= 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 81301.

    Article  ADS  Google Scholar 

  14. [14]

    Z. Bern, Ultraviolet surprises in gravity, talk given at Bay Area Particle Theory Seminar (BAPTS), October9, San Francisco, U.S.A (2015).

  15. [15]

    S. Deser, J.H. Kay and K.S. Stelle, Renormalizability properties of supergravity, Phys. Rev. Lett.38 (1977) 527 [arXiv:1506.03757] [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    E. Witten, What every physicist should know about string theory, in Foundations of mathematics and physics one century after Hilbert, J. Kouneiher ed., Springer, Germany (2018).

  17. [17]

    S. Weinberg, The quantum theory of fields. Vol. 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2013).

    Google Scholar 

  18. [18]

    M. Tanabashi et al., Review of particle physics, Phys. Rev.D 98 (2018) 030001.

    ADS  Google Scholar 

  19. [19]

    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept.405 (2005) 279.

    Article  ADS  Google Scholar 

  20. [20]

    R. D. Peccei, The strong CP problem and axions, in Axions, M. Kuster et al. eds., Springer, Germany (2008).

    Google Scholar 

  21. [21]

    S.M. Carroll, The cosmological constant, Liv. Rev. Rel.4 (2001) 1.

    Article  MathSciNet  MATH  Google Scholar 

  22. [22]

    E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].

  23. [23]

    S.L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426.

    Article  ADS  Google Scholar 

  24. [24]

    A. Bilal, Lectures on anomalies, arXiv:0802.0634 [INSPIRE].

  25. [25]

    H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett.32 (1974) 438 [INSPIRE].

    Article  ADS  Google Scholar 

  26. [26]

    J.C. Pati and A. Salam, Lepton number as the fourth “color”, Phys. Rev.10 (1974) 275.

  27. [27]

    F. Englert, Nobel lecture: the BEH mechanism and its scalar boson, Rev. Mod. Phys.86 (2014) 843.

    Article  ADS  MATH  Google Scholar 

  28. [28]

    P.W. Higgs, Nobel lecture: evading the Goldstone theorem, Rev. Mod. Phys.86 (2014) 851.

    Article  ADS  Google Scholar 

  29. [29]

    H. Nicolai and N.P. Warner, The SU(3) × U(1) invariant breaking of gauged N = 8 supergravity, Nucl. Phys.B 259 (1985) 412 [INSPIRE].

    Article  ADS  Google Scholar 

  30. [30]

    K. A. Meissner and H. Nicolai, Standard model fermions and \( \mathcal{N} \)= 8 supergravity, Phys. Rev.D 91 (2015) 65029.

    ADS  Google Scholar 

  31. [31]

    A. Kleinschmidt and H. Nicolai, Standard model fermions and K(E 10), Phys. Lett.B 747 (2015) 251 [arXiv:1504.01586] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. [32]

    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 supersymmetric RG flows on M 2 branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].

  33. [33]

    T. Kaluza, On the unification problem in physics, Int. J. Mod. Phys.D 27 (2018) 1870001.

  34. [34]

    O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys.37 (1926) 895.

    Article  ADS  MATH  Google Scholar 

  35. [35]

    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett.B 76 (1978) 409 [INSPIRE].

    Article  ADS  Google Scholar 

  36. [36]

    E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The lagrangian, Phys. Lett.B 80 (1978) 48 [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys.B 159 (1979) 141 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. [38]

    G. Parisi and N. Sourlas, Supersymmetric field theories and stochastic differential equations, Nucl. Phys.B 206 (1982) 321.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. [39]

    S. Ferrara, J. Scherk and B. Zumino, Algebraic properties of extended supergravity theories, Nucl. Phys. B121 (1977) 393 [INSPIRE].

    Article  ADS  Google Scholar 

  40. [40]

    E.S. Fradkin and M.A. Vasiliev, Minimal set of auxiliary fields in SO(2) extended supergravity, Phys. Lett.85B (1979) 47 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. [41]

    P. Fayet, Fermi-Bose hypersymmetry, Nucl. Phys. B113 (1976) 135 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. [42]

    J. Scherk, Antigravity: a crazy idea?, Phys. Lett.88B (1979) 265 [INSPIRE].

  43. [43]

    E. Kopczynski, D. Celinska and M. Čtrnáct, HyperRogue: playing with Hyperbolic Geometry, in the proceedings of the Bridges Conference, July 27-31, Ontario, Canada (2017).

  44. [44]

    J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. Math.64 (1956) 399.

    Article  MathSciNet  MATH  Google Scholar 

  45. [45]

    E.V. Brieskorn, Examples of singular normal complex spaces which are topological manifolds, Proc. Natl. Acad. Sci. U.S.A.55 (1966) 1395.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. [46]

    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE].

  47. [47]

    E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in the proceedings of Quantum field theory and the fundamental problems of physics, June 1-3, Shelter Island, U.S.A. (1983).

  48. [48]

    J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113.

    Article  MathSciNet  MATH  Google Scholar 

  49. [49]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  50. [50]

    E. Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. [51]

    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  52. [52]

    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev.D 78 (2008) 065034.

    ADS  Google Scholar 

  53. [53]

    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP12 (2008) 015.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. [54]

    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. [55]

    J. Ehlers, Konstruktionen und Charakterisierung von Losungen der Einsteinschen Gravitationsfeldgleichungen, Ph.D. thesis, Hamburg University, Hamburg, Germany (1957).

  56. [56]

    R. Geroch, A method for generating solutions of Einstein’s equations, J. Math. Phys.12 (1971) 918.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. [57]

    J. Berkeley and D.S. Berman, The Navier-Stokes equation and solution generating symmetries from holography, JHEP04 (2013) 092 [arXiv:1211.1983] [INSPIRE].

    Article  ADS  Google Scholar 

  58. [58]

    S. Bhattacharyya, S. Minwalla, V. E. Hubeny and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045.

    Article  ADS  Google Scholar 

  59. [59]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP10 (2008) 091.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. [60]

    N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS 4, JHEP03 (2018) 050 [arXiv:1801.03135] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. [61]

    A.M. Turing, Computing machinery and intelligence, Mind49 (1950) 433.

    Article  MathSciNet  Google Scholar 

  62. [62]

    A.L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev.3 (1959) 210.

    Article  MathSciNet  Google Scholar 

  63. [63]

    C. Olah, A. Mordvintsev and L. Schubert, Feature visualization, Distill2 (2017) e7.

  64. [64]

    D. Genzel and A. Popat, Paper to digital in 200+ languages, (2015).

  65. [65]

    A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Advances in neural information processing systems 25 , F. Pereira et al. eds., Curran Associates Inc., U.S.A. (2012).

  66. [66]

    C. Szegedy et al., Going deeper with convolutions, in the proceedings of the 28thIEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, Boston, U.S.A. (2014) [arXiv:1409.4842].

  67. [67]

    P. Sharma, N. Ding, S. Goodman and R. Soricut, Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning, in the proceedings of the 56thAnnual Meeting of the Association for Computational Linguistics , July 15-20, Melbourne, Australia (2018).

  68. [68]

    A. Vaswani et al., Attention is all you need, in Advances in neural information processing systems 30 , I. Guyon et al. eds., Curran Associates Inc., U.S.A. (2017).

  69. [69]

    D. Silver et al., Mastering the game of Go with deep neural networks and tree search, Nature529 (2016) 484.

    Article  ADS  Google Scholar 

  70. [70]

    O. Vinyals et al., AlphaStar: mastering the real-time strategy game StarCraft II, https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii (2019).

  71. [71]

    T. Karras, S. Laine and T. Aila, A style-based generator architecture for generative adversarial networks, arXiv:1812.04948.

  72. [72]

    F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev.65 (1958) 386.

    Article  Google Scholar 

  73. [73]

    D.E. Rumelhart et al., A general framework for parallel distributed processing, in Parallel distributed processing: Explorations in the microstructure of cognition, D.E. Rumelhart and J.L. McClelland eds., MIT Press, U.S.A. (1986).

  74. [74]

    S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput.9 (1997) 1735.

    Article  Google Scholar 

  75. [75]

    Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE86 (1998) 2278.

    Article  Google Scholar 

  76. [76]

    E.J. Hartman, J.D. Keeler and J.M. Kowalski, Layered neural networks with gaussian hidden units as universal approximations, Neural Comput.2 (1990) 210.

    Article  Google Scholar 

  77. [77]

    G.E. Hinton, S. Osindero and Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural Comput.18 (2006) 1527 [arXiv:1111.6189].

    Article  MathSciNet  MATH  Google Scholar 

  78. [78]

    C. Cortes and V. Vapnik, Support-vector networks, Machine Learn.20 (1995) 273.

    MATH  Google Scholar 

  79. [79]

    X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in the proceedings of the 14th International Conference on Artificial Intelligence and Statistics , April 11-13, Ft. Lauderdale, U.S.A. (2011).

  80. [80]

    T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybernet.43 (1982) 59.

    Article  MathSciNet  MATH  Google Scholar 

  81. [81]

    P. Covington, J. Adams and E. Sargin, Deep neural networks for YouTube recommendations, in the proceedings of the 10thACM Conference on Recommender Systems (RecSys’16), September 15-19, Boston, U.S.A. (2016).

  82. [82]

    V. Mnih et al., Human-level control through deep reinforcement learning, Nature518 (2015) 529.

    Article  ADS  Google Scholar 

  83. [83]

    R. Dunne and N. Campbell, On the pairing of the Softmax activation and cross-entropy penalty functions and the derivation of the Softmax activation function, in the proceedings of the 8thAustralian Conference on Neural Networks (ACNN97), Australia (1997).

  84. [84]

    B. Speelpenning, Compiling fast partial derivatives of functions given by algorithms, Ph.D. thesis, University of Illinois Urbana-Champaign, Champaign, U.S.A. (1980).

  85. [85]

    D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error propagation, technical report, US Dept of the Navy, Cambridge, U.S.A. (1985).

    Google Scholar 

  86. [86]

    R. Bellman, Dynamic programming and a new formalism in the calculus of variations, Proc. Natl. Acad. Sci.40 (1954) 231.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. [87]

    R6RS-AD, https://github.com/qobi/R6RS-AD.

  88. [88]

    R. Kondor et al., Covariant compositional networks for learning graphs, [arXiv:1801.02144].

  89. [89]

    I. Bars, Supersymmetry, p-brane duality and hidden space-time dimensions, Phys. Rev.D 54 (1996) 5203 [hep-th/9604139] [INSPIRE].

  90. [90]

    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett.B 189 (1987) 75 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. [91]

    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989).

  92. [92]

    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept.130 (1986) 1 [INSPIRE].

  93. [93]

    P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett.B 97 (1980) 233 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  94. [94]

    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1., Nucl. Phys.B 523 (1998) 73 [hep-th/9710119] [INSPIRE].

  95. [95]

    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities, Nucl. Phys.B 535 (1998) 242 [hep-th/9806106] [INSPIRE].

  96. [96]

    M.J. Duff, Ultraviolet divergences in extended supergravity, talk given at the First School on Supergravity, April 22-May 6, Trieste, Italy (1981), arXiv:1201.0386 [INSPIRE].

  97. [97]

    B. Biran, F. Englert, B. de Wit and H. Nicolai, Gauged N = 8 supergravity and its breaking from spontaneous compactification, Phys. Lett.B 124 (1983) 45.

  98. [98]

    M.J. Duff and C.N. Pope, Kaluza-Klein supergravity and the seven sphere, in the proceedings of the September School on Supergravity and Supersymmetry, September 6-18, Trieste, Italy (1982).

  99. [99]

    B. de Wit and H. Nicolai, The consistency of the S 7truncation in D = 11 supergravity, Nucl. Phys.B 281 (1987) 211 [INSPIRE].

  100. [100]

    H. Nicolai and K. Pilch, Consistent truncation of d = 11 supergravity on AdS 4 × S 7, JHEP03 (2012) 099 [arXiv:1112.6131] [INSPIRE].

  101. [101]

    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Compactification of d = 11 Supergravity on K(3) × U(3), Phys. Lett. B129 (1983) 39 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  102. [102]

    B. de Wit, H. Samtleben and M. Trigiante, The maximal \( \mathcal{D} \)= 4 supergravities, JHEP 06 (2007) 049.

  103. [103]

    C.M. Hull and N.P. Warner, The structure of the gauged N = 8 supergravity theories, Nucl. Phys.B 253 (1985) 650 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  104. [104]

    C.M. Hull, Non-compact gaugings of \( \mathcal{N} \) = 8 supergravity, in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989).

  105. [105]

    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

    Article  ADS  Google Scholar 

  106. [106]

    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys.B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. [107]

    B. de Wit, Supergravity, in the proceedings of Unity from duality. Gravity, gauge theory and strings. NATO Advanced Study Institute, Euro Summer School, 76thsession, July 30-August 31, Les Houches, France (2001), hep-th/0212245 [INSPIRE].

  108. [108]

    T. Fischbacher, Fourteen new stationary points in the scalar potential of SO(8)-gauged N = 8, D = 4 supergravity, JHEP09 (2010) 068 [arXiv:0912.1636] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  109. [109]

    G. Y. Rainich, Electrodynamics in the general relativity theory, Proc. Natl. Acad. Sci.10 (1924) 124.

    Article  ADS  MATH  Google Scholar 

  110. [110]

    N.P. Warner, Some properties of the scalar potential in gauged supergravity theories, Nucl. Phys.B 231 (1984) 250 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  111. [111]

    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys.144 (1982) 249 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. [112]

    T. Fischbacher, K. Pilch and N.P. Warner, New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory, arXiv:1010.4910 [INSPIRE].

  113. [113]

    H. Godazga, An SO(3) × SO(3) invariant solution of D = 11 supergravity, JHEP01 (2015) 056 [arXiv:1410.5090] [INSPIRE].

    Article  ADS  Google Scholar 

  114. [114]

    A. Borghese, R. Linares and D. Roest, Minimal Stability in Maximal Supergravity, JHEP07 (2012) 034 [arXiv:1112.3939] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. [115]

    T. Fischbacher, The many vacua of gauged extended supergravities, Gen. Rel. Grav.41 (2009) 315 [arXiv:0811.1915] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. [116]

    N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett.128B (1983) 169 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  117. [117]

    B. de Wit and H. Nicolai, A new SO(7) invariant solution of d = 11 supergravity, Phys. Lett.148B (1984) 60 [INSPIRE].

  118. [118]

    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity instabilities of non-supersymmetric quantum critical points, Class. Quant. Grav.27 (2010) 235013.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. [119]

    B. de Wit and H. Nicolai, The parallelizing S 7torsion in gauged N = 8 supergravity, Nucl. Phys.B 231 (1984) 506 [INSPIRE].

    Article  ADS  Google Scholar 

  120. [120]

    Google colaboratory, https://colab.sandbox.google.com.

  121. [121]

    N.P. Jouppi et al., In-datacenter performance analysis of a tensor processing unit, in the proceedings of the 44thAnnual International Symposium on Computer Architecture (ISCA’17), June 24-28, Toronto, Canada (2017), arXiv:1704.04760.

  122. [122]

    J. Nocedal and S. Wright, Numerical optimization, 2nd edition, Springer Series in Operations Research and Financial Engineering, Springer, Germany (2006).

  123. [123]

    M. Morse, The calculus of variations in the large, Monat. Math. Phys.47 (1939) A10.

  124. [124]

    N. Bobev, T. Fischbacher and K. Pilch, A new \( \mathcal{N} \) = 1 AdS 4vacuum of maximal supergravity, work in progress.

  125. [125]

    T. Fischbacher, The encyclopedic reference of critical points for SO(8)-gauged N = 8 supergravity. Part 1: cosmological constants in the range −Λ/g 2 ∈ [6 : 14.7), arXiv:1109.1424 [INSPIRE].

  126. [126]

    S. Dittmaier, Precision standard model physics, talv given at LoopFest V, June 19-21, SLAC, Stanford, U.S.A. (2006).

  127. [127]

    G.P. Collins, The Large Hadron Collider: the discovery machine, Sci. Amer. (2008) 39.

  128. [128]

    F. Johansson et al., mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18) (2013).

  129. [129]

    D. Maclaurin, Modeling, inference and optimization with composable differentiable procedures, Ph.D. thesis, Harvard University, Cambridge, U.S.A. (2016).

  130. [130]

    P.B. Davenport, Rotations about nonorthogonal axes, AIAA J.11 (1973) 853.

    Article  ADS  MATH  Google Scholar 

  131. [131]

    J. Wittenburg and L. Lilov, Decomposition of a finite rotation into three rotations about given axes, Mult. Syst. Dyn.9 (2003) 353.

    Article  MathSciNet  MATH  Google Scholar 

  132. [132]

    D.H. Bailey and J.M. Borwein, PSLQ: an algorithm to discover integer relations, (2009).

  133. [133]

    B. de Wit and H. Nicolai, Properties of \( \mathcal{N} \) = 8 supergravity, in the proceedings of the 19thWinter School and Workshop on Theoretical Physics: Supersymmetry and Supergravity, February 14-26, Karpacz, Poland (1983).

  134. [134]

    A. Borghese, A. Guarino and D. Roest, Triality, periodicity and stability of SO(8) gauged supergravity, JHEP05 (2013) 107 [arXiv:1302.6057] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. [135]

    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Cambridge Monographs on Mathematical Physics volume 150, Camrbidge University PRess, Cambridge U.K. (2012).

  136. [136]

    J.C. Baez, The octonions, Bull. Amer. Math. Soc.39 (2001) 145 [math/0105155].

    Article  MathSciNet  MATH  Google Scholar 

  137. [137]

    T. Fischbacher, Numerical tools to validate stationary points of SO(8)-gauged N = 8 D = 4 supergravity, Comput. Phys. Commun.183 (2012) 780 [arXiv:1007.0600] [INSPIRE].

    Article  ADS  Google Scholar 

  138. [138]

    F. Englert, Spontaneous compactification of eleven-dimensional supergravity, Phys. Lett.B 119 (1982) 339 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Fischbacher.

Additional information

ArXiv ePrint: 1906.00207

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Comsa, I.M., Firsching, M. & Fischbacher, T. SO(8) supergravity and the magic of machine learning. J. High Energ. Phys. 2019, 57 (2019). https://doi.org/10.1007/JHEP08(2019)057

Download citation

Keywords

  • Supergravity Models
  • Supersymmetry Breaking
  • AdS-CFT Correspondence
  • M-Theory