Advertisement

SO(8) supergravity and the magic of machine learning

  • Iulia M. Comsa
  • Moritz Firsching
  • Thomas FischbacherEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Using de Wit-Nicolai D = 4 \( \mathcal{N} \) = 8 SO(8) supergravity as an example, we show how modern Machine Learning software libraries such as Google’s TensorFlow can be employed to greatly simplify the analysis of high-dimensional scalar sectors of some M-Theory compactifications. We provide detailed information on the location, symmetries, and particle spectra and charges of 192 critical points on the scalar manifold of SO(8) supergravity, including one newly discovered \( \mathcal{N} \) = 1 vacuum with SO(3) residual symmetry, one new potentially stabilizable non-supersymmetric solution, and examples for “Galois conjugate pairs” of solutions, i.e. solution-pairs that share the same gauge group embedding into SO(8) and minimal polynomials for the cosmological constant. Where feasible, we give analytic expressions for solution coordinates and cosmological constants.

As the authors’ aspiration is to present the discussion in a form that is accessible to both the Machine Learning and String Theory communities and allows adopting our methods towards the study of other models, we provide an introductory overview over the relevant Physics as well as Machine Learning concepts. This includes short pedagogical code examples. In particular, we show how to formulate a requirement for residual Supersymmetry as a Machine Learning loss function and effectively guide the numerical search towards supersymmetric critical points. Numerical investigations suggest that there are no further supersymmetric vacua beyond this newly discovered fifth solution.

Keywords

Supergravity Models Supersymmetry Breaking AdS-CFT Correspondence M-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S.W. Hawking, Is the end in sight for theoretical physics?, Phys. Bull.32 (1981) 15.CrossRefGoogle Scholar
  2. [2]
    M. Abadi et al., TensorFlow: a system for large-scale machine learning, talk given at the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), November 2-4, Savannah, U.S.A. (2016).
  3. [3]
    B. de Wit and H. Nicolai, N = 8 supergravity with Local SO(8) × SU(8) invariance, Phys. Lett. B108 (1982) 285 [INSPIRE].
  4. [4]
    B. de Wit and H. Nicolai, Local SO(8) × SU(8) invariance in \( \mathcal{N} \) = 8 supergravity and its implication for superunification, technical report CM-P00062104 (1981).Google Scholar
  5. [5]
    M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett.154B (1985) 268 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
  7. [7]
  8. [8]
    M.J. Duff, The theory formerly known as strings, Sci. Amer.278 (1998) 64 [math/9608117].CrossRefGoogle Scholar
  9. [9]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys.B 443 (1995) 85 [hep-th/9503124] [INSPIRE].
  10. [10]
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys.B 70 (1974) 39 [INSPIRE].
  11. [11]
    D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress toward a theory of supergravity, Phys. Rev.D 13 (1976) 3214 [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S. Deser and B. Zumino, Consistent supergravity, Phys. Lett.B 62 (1976) 335 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    Z. Bern et al., Ultraviolet behavior of \( \mathcal{N} \)= 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 81301.CrossRefADSGoogle Scholar
  14. [14]
    Z. Bern, Ultraviolet surprises in gravity, talk given at Bay Area Particle Theory Seminar (BAPTS), October9, San Francisco, U.S.A (2015).Google Scholar
  15. [15]
    S. Deser, J.H. Kay and K.S. Stelle, Renormalizability properties of supergravity, Phys. Rev. Lett.38 (1977) 527 [arXiv:1506.03757] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    E. Witten, What every physicist should know about string theory, in Foundations of mathematics and physics one century after Hilbert, J. Kouneiher ed., Springer, Germany (2018).Google Scholar
  17. [17]
    S. Weinberg, The quantum theory of fields. Vol. 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2013).zbMATHGoogle Scholar
  18. [18]
    M. Tanabashi et al., Review of particle physics, Phys. Rev.D 98 (2018) 030001.ADSGoogle Scholar
  19. [19]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept.405 (2005) 279.CrossRefADSGoogle Scholar
  20. [20]
    R. D. Peccei, The strong CP problem and axions, in Axions, M. Kuster et al. eds., Springer, Germany (2008).CrossRefGoogle Scholar
  21. [21]
    S.M. Carroll, The cosmological constant, Liv. Rev. Rel.4 (2001) 1.CrossRefMathSciNetzbMATHGoogle Scholar
  22. [22]
    E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].
  23. [23]
    S.L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426.CrossRefADSGoogle Scholar
  24. [24]
    A. Bilal, Lectures on anomalies, arXiv:0802.0634 [INSPIRE].
  25. [25]
    H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett.32 (1974) 438 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    J.C. Pati and A. Salam, Lepton number as the fourth “color”, Phys. Rev.10 (1974) 275.Google Scholar
  27. [27]
    F. Englert, Nobel lecture: the BEH mechanism and its scalar boson, Rev. Mod. Phys.86 (2014) 843.CrossRefADSzbMATHGoogle Scholar
  28. [28]
    P.W. Higgs, Nobel lecture: evading the Goldstone theorem, Rev. Mod. Phys.86 (2014) 851.CrossRefADSGoogle Scholar
  29. [29]
    H. Nicolai and N.P. Warner, The SU(3) × U(1) invariant breaking of gauged N = 8 supergravity, Nucl. Phys.B 259 (1985) 412 [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    K. A. Meissner and H. Nicolai, Standard model fermions and \( \mathcal{N} \)= 8 supergravity, Phys. Rev.D 91 (2015) 65029.ADSGoogle Scholar
  31. [31]
    A. Kleinschmidt and H. Nicolai, Standard model fermions and K(E 10), Phys. Lett.B 747 (2015) 251 [arXiv:1504.01586] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  32. [32]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 supersymmetric RG flows on M 2 branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].
  33. [33]
    T. Kaluza, On the unification problem in physics, Int. J. Mod. Phys.D 27 (2018) 1870001.Google Scholar
  34. [34]
    O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys.37 (1926) 895.CrossRefADSzbMATHGoogle Scholar
  35. [35]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett.B 76 (1978) 409 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The lagrangian, Phys. Lett.B 80 (1978) 48 [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys.B 159 (1979) 141 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    G. Parisi and N. Sourlas, Supersymmetric field theories and stochastic differential equations, Nucl. Phys.B 206 (1982) 321.CrossRefADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    S. Ferrara, J. Scherk and B. Zumino, Algebraic properties of extended supergravity theories, Nucl. Phys. B121 (1977) 393 [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    E.S. Fradkin and M.A. Vasiliev, Minimal set of auxiliary fields in SO(2) extended supergravity, Phys. Lett.85B (1979) 47 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    P. Fayet, Fermi-Bose hypersymmetry, Nucl. Phys. B113 (1976) 135 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    J. Scherk, Antigravity: a crazy idea?, Phys. Lett.88B (1979) 265 [INSPIRE].
  43. [43]
    E. Kopczynski, D. Celinska and M. Čtrnáct, HyperRogue: playing with Hyperbolic Geometry, in the proceedings of the Bridges Conference, July 27-31, Ontario, Canada (2017).Google Scholar
  44. [44]
    J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. Math.64 (1956) 399.CrossRefMathSciNetzbMATHGoogle Scholar
  45. [45]
    E.V. Brieskorn, Examples of singular normal complex spaces which are topological manifolds, Proc. Natl. Acad. Sci. U.S.A.55 (1966) 1395.CrossRefADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE].
  47. [47]
    E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in the proceedings of Quantum field theory and the fundamental problems of physics, June 1-3, Shelter Island, U.S.A. (1983).Google Scholar
  48. [48]
    J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113.CrossRefMathSciNetzbMATHGoogle Scholar
  49. [49]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  50. [50]
    E. Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253.CrossRefADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev.D 78 (2008) 065034.ADSGoogle Scholar
  53. [53]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP12 (2008) 015.CrossRefADSMathSciNetzbMATHGoogle Scholar
  54. [54]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  55. [55]
    J. Ehlers, Konstruktionen und Charakterisierung von Losungen der Einsteinschen Gravitationsfeldgleichungen, Ph.D. thesis, Hamburg University, Hamburg, Germany (1957).Google Scholar
  56. [56]
    R. Geroch, A method for generating solutions of Einstein’s equations, J. Math. Phys.12 (1971) 918.CrossRefADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    J. Berkeley and D.S. Berman, The Navier-Stokes equation and solution generating symmetries from holography, JHEP04 (2013) 092 [arXiv:1211.1983] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    S. Bhattacharyya, S. Minwalla, V. E. Hubeny and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP02 (2008) 045.CrossRefADSGoogle Scholar
  59. [59]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP10 (2008) 091.CrossRefADSMathSciNetzbMATHGoogle Scholar
  60. [60]
    N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS 4, JHEP03 (2018) 050 [arXiv:1801.03135] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  61. [61]
    A.M. Turing, Computing machinery and intelligence, Mind49 (1950) 433.CrossRefMathSciNetGoogle Scholar
  62. [62]
    A.L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev.3 (1959) 210.CrossRefMathSciNetGoogle Scholar
  63. [63]
    C. Olah, A. Mordvintsev and L. Schubert, Feature visualization, Distill2 (2017) e7.Google Scholar
  64. [64]
    D. Genzel and A. Popat, Paper to digital in 200+ languages, (2015).Google Scholar
  65. [65]
    A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Advances in neural information processing systems 25, F. Pereira et al. eds., Curran Associates Inc., U.S.A. (2012).
  66. [66]
    C. Szegedy et al., Going deeper with convolutions, in the proceedings of the 28thIEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, Boston, U.S.A. (2014) [arXiv:1409.4842].
  67. [67]
    P. Sharma, N. Ding, S. Goodman and R. Soricut, Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning, in the proceedings of the 56thAnnual Meeting of the Association for Computational Linguistics , July 15-20, Melbourne, Australia (2018).
  68. [68]
    A. Vaswani et al., Attention is all you need, in Advances in neural information processing systems 30 , I. Guyon et al. eds., Curran Associates Inc., U.S.A. (2017).
  69. [69]
    D. Silver et al., Mastering the game of Go with deep neural networks and tree search, Nature529 (2016) 484.CrossRefADSGoogle Scholar
  70. [70]
    O. Vinyals et al., AlphaStar: mastering the real-time strategy game StarCraft II, https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii (2019).
  71. [71]
    T. Karras, S. Laine and T. Aila, A style-based generator architecture for generative adversarial networks, arXiv:1812.04948.
  72. [72]
    F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev.65 (1958) 386.CrossRefGoogle Scholar
  73. [73]
    D.E. Rumelhart et al., A general framework for parallel distributed processing, in Parallel distributed processing: Explorations in the microstructure of cognition, D.E. Rumelhart and J.L. McClelland eds., MIT Press, U.S.A. (1986).Google Scholar
  74. [74]
    S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput.9 (1997) 1735.CrossRefGoogle Scholar
  75. [75]
    Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE86 (1998) 2278.CrossRefGoogle Scholar
  76. [76]
    E.J. Hartman, J.D. Keeler and J.M. Kowalski, Layered neural networks with gaussian hidden units as universal approximations, Neural Comput.2 (1990) 210.CrossRefGoogle Scholar
  77. [77]
    G.E. Hinton, S. Osindero and Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural Comput.18 (2006) 1527 [arXiv:1111.6189].CrossRefMathSciNetzbMATHGoogle Scholar
  78. [78]
    C. Cortes and V. Vapnik, Support-vector networks, Machine Learn.20 (1995) 273.zbMATHGoogle Scholar
  79. [79]
    X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in the proceedings of the 14th International Conference on Artificial Intelligence and Statistics, April 11-13, Ft. Lauderdale, U.S.A. (2011).
  80. [80]
    T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybernet.43 (1982) 59.CrossRefMathSciNetzbMATHGoogle Scholar
  81. [81]
    P. Covington, J. Adams and E. Sargin, Deep neural networks for YouTube recommendations, in the proceedings of the 10thACM Conference on Recommender Systems (RecSys’16), September 15-19, Boston, U.S.A. (2016).Google Scholar
  82. [82]
    V. Mnih et al., Human-level control through deep reinforcement learning, Nature518 (2015) 529.CrossRefADSGoogle Scholar
  83. [83]
    R. Dunne and N. Campbell, On the pairing of the Softmax activation and cross-entropy penalty functions and the derivation of the Softmax activation function, in the proceedings of the 8thAustralian Conference on Neural Networks (ACNN97), Australia (1997).Google Scholar
  84. [84]
    B. Speelpenning, Compiling fast partial derivatives of functions given by algorithms, Ph.D. thesis, University of Illinois Urbana-Champaign, Champaign, U.S.A. (1980).Google Scholar
  85. [85]
    D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error propagation, technical report, US Dept of the Navy, Cambridge, U.S.A. (1985).CrossRefGoogle Scholar
  86. [86]
    R. Bellman, Dynamic programming and a new formalism in the calculus of variations, Proc. Natl. Acad. Sci.40 (1954) 231.CrossRefADSMathSciNetzbMATHGoogle Scholar
  87. [87]
  88. [88]
    R. Kondor et al., Covariant compositional networks for learning graphs, [arXiv:1801.02144].
  89. [89]
    I. Bars, Supersymmetry, p-brane duality and hidden space-time dimensions, Phys. Rev.D 54 (1996) 5203 [hep-th/9604139] [INSPIRE].
  90. [90]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett.B 189 (1987) 75 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  91. [91]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989).Google Scholar
  92. [92]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept.130 (1986) 1 [INSPIRE].
  93. [93]
    P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett.B 97 (1980) 233 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  94. [94]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1., Nucl. Phys.B 523 (1998) 73 [hep-th/9710119] [INSPIRE].
  95. [95]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities, Nucl. Phys.B 535 (1998) 242 [hep-th/9806106] [INSPIRE].
  96. [96]
    M.J. Duff, Ultraviolet divergences in extended supergravity, talk given at the First School on Supergravity, April 22-May 6, Trieste, Italy (1981), arXiv:1201.0386 [INSPIRE].
  97. [97]
    B. Biran, F. Englert, B. de Wit and H. Nicolai, Gauged N = 8 supergravity and its breaking from spontaneous compactification, Phys. Lett.B 124 (1983) 45.Google Scholar
  98. [98]
    M.J. Duff and C.N. Pope, Kaluza-Klein supergravity and the seven sphere, in the proceedings of the September School on Supergravity and Supersymmetry, September 6-18, Trieste, Italy (1982).Google Scholar
  99. [99]
    B. de Wit and H. Nicolai, The consistency of the S 7truncation in D = 11 supergravity, Nucl. Phys.B 281 (1987) 211 [INSPIRE].
  100. [100]
    H. Nicolai and K. Pilch, Consistent truncation of d = 11 supergravity on AdS 4 × S 7, JHEP03 (2012) 099 [arXiv:1112.6131] [INSPIRE].
  101. [101]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Compactification of d = 11 Supergravity on K(3) × U(3), Phys. Lett. B129 (1983) 39 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  102. [102]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal \( \mathcal{D} \)= 4 supergravities, JHEP 06 (2007) 049.Google Scholar
  103. [103]
    C.M. Hull and N.P. Warner, The structure of the gauged N = 8 supergravity theories, Nucl. Phys.B 253 (1985) 650 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  104. [104]
    C.M. Hull, Non-compact gaugings of \( \mathcal{N} \) = 8 supergravity, in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989).Google Scholar
  105. [105]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].CrossRefADSGoogle Scholar
  106. [106]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys.B 655 (2003) 93 [hep-th/0212239] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  107. [107]
    B. de Wit, Supergravity, in the proceedings of Unity from duality. Gravity, gauge theory and strings. NATO Advanced Study Institute, Euro Summer School, 76thsession, July 30-August 31, Les Houches, France (2001), hep-th/0212245 [INSPIRE].
  108. [108]
    T. Fischbacher, Fourteen new stationary points in the scalar potential of SO(8)-gauged N = 8, D = 4 supergravity, JHEP09 (2010) 068 [arXiv:0912.1636] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  109. [109]
    G. Y. Rainich, Electrodynamics in the general relativity theory, Proc. Natl. Acad. Sci.10 (1924) 124.CrossRefADSzbMATHGoogle Scholar
  110. [110]
    N.P. Warner, Some properties of the scalar potential in gauged supergravity theories, Nucl. Phys.B 231 (1984) 250 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  111. [111]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys.144 (1982) 249 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  112. [112]
    T. Fischbacher, K. Pilch and N.P. Warner, New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory, arXiv:1010.4910 [INSPIRE].
  113. [113]
    H. Godazga, An SO(3) × SO(3) invariant solution of D = 11 supergravity, JHEP01 (2015) 056 [arXiv:1410.5090] [INSPIRE].CrossRefADSGoogle Scholar
  114. [114]
    A. Borghese, R. Linares and D. Roest, Minimal Stability in Maximal Supergravity, JHEP07 (2012) 034 [arXiv:1112.3939] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  115. [115]
    T. Fischbacher, The many vacua of gauged extended supergravities, Gen. Rel. Grav.41 (2009) 315 [arXiv:0811.1915] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  116. [116]
    N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett.128B (1983) 169 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  117. [117]
    B. de Wit and H. Nicolai, A new SO(7) invariant solution of d = 11 supergravity, Phys. Lett.148B (1984) 60 [INSPIRE].
  118. [118]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity instabilities of non-supersymmetric quantum critical points, Class. Quant. Grav.27 (2010) 235013.CrossRefADSMathSciNetzbMATHGoogle Scholar
  119. [119]
    B. de Wit and H. Nicolai, The parallelizing S 7torsion in gauged N = 8 supergravity, Nucl. Phys.B 231 (1984) 506 [INSPIRE].CrossRefADSGoogle Scholar
  120. [120]
    Google colaboratory, https://colab.sandbox.google.com.
  121. [121]
    N.P. Jouppi et al., In-datacenter performance analysis of a tensor processing unit, in the proceedings of the 44thAnnual International Symposium on Computer Architecture (ISCA’17), June 24-28, Toronto, Canada (2017), arXiv:1704.04760.
  122. [122]
    J. Nocedal and S. Wright, Numerical optimization, 2nd edition, Springer Series in Operations Research and Financial Engineering, Springer, Germany (2006).Google Scholar
  123. [123]
    M. Morse, The calculus of variations in the large, Monat. Math. Phys.47 (1939) A10.Google Scholar
  124. [124]
    N. Bobev, T. Fischbacher and K. Pilch, A new \( \mathcal{N} \) = 1 AdS 4vacuum of maximal supergravity, work in progress.Google Scholar
  125. [125]
    T. Fischbacher, The encyclopedic reference of critical points for SO(8)-gauged N = 8 supergravity. Part 1: cosmological constants in the range −Λ/g 2 ∈ [6 : 14.7), arXiv:1109.1424 [INSPIRE].
  126. [126]
    S. Dittmaier, Precision standard model physics, talv given at LoopFest V, June 19-21, SLAC, Stanford, U.S.A. (2006).Google Scholar
  127. [127]
    G.P. Collins, The Large Hadron Collider: the discovery machine, Sci. Amer. (2008) 39.Google Scholar
  128. [128]
    F. Johansson et al., mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18) (2013).Google Scholar
  129. [129]
    D. Maclaurin, Modeling, inference and optimization with composable differentiable procedures, Ph.D. thesis, Harvard University, Cambridge, U.S.A. (2016).Google Scholar
  130. [130]
    P.B. Davenport, Rotations about nonorthogonal axes, AIAA J.11 (1973) 853.CrossRefADSzbMATHGoogle Scholar
  131. [131]
    J. Wittenburg and L. Lilov, Decomposition of a finite rotation into three rotations about given axes, Mult. Syst. Dyn.9 (2003) 353.CrossRefMathSciNetzbMATHGoogle Scholar
  132. [132]
    D.H. Bailey and J.M. Borwein, PSLQ: an algorithm to discover integer relations, (2009).Google Scholar
  133. [133]
    B. de Wit and H. Nicolai, Properties of \( \mathcal{N} \) = 8 supergravity, in the proceedings of the 19thWinter School and Workshop on Theoretical Physics: Supersymmetry and Supergravity, February 14-26, Karpacz, Poland (1983).Google Scholar
  134. [134]
    A. Borghese, A. Guarino and D. Roest, Triality, periodicity and stability of SO(8) gauged supergravity, JHEP05 (2013) 107 [arXiv:1302.6057] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  135. [135]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Cambridge Monographs on Mathematical Physics volume 150, Camrbidge University PRess, Cambridge U.K. (2012).Google Scholar
  136. [136]
    J.C. Baez, The octonions, Bull. Amer. Math. Soc.39 (2001) 145 [math/0105155].CrossRefMathSciNetzbMATHGoogle Scholar
  137. [137]
    T. Fischbacher, Numerical tools to validate stationary points of SO(8)-gauged N = 8 D = 4 supergravity, Comput. Phys. Commun.183 (2012) 780 [arXiv:1007.0600] [INSPIRE].CrossRefADSGoogle Scholar
  138. [138]
    F. Englert, Spontaneous compactification of eleven-dimensional supergravity, Phys. Lett.B 119 (1982) 339 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Iulia M. Comsa
    • 1
  • Moritz Firsching
    • 1
  • Thomas Fischbacher
    • 1
    Email author
  1. 1.Google ResearchZürichSwitzerland

Personalised recommendations