## Abstract

Polarizable atoms interacting with a charged wire do so through an inverse-square potential, *V* = −*g/r*^{2}. This system is known to realize scale invariance in a nontrivial way and to be subject to ambiguities associated with the choice of boundary condition at the origin, often termed the problem of ‘fall to the center’. Point-particle effective field theory (PPEFT) provides a systematic framework for determining the boundary condition in terms of the properties of the source residing at the origin. We apply this formalism to the charged-wire/polarizable-atom problem, finding a result that is not a self-adjoint extension because of absorption of atoms by the wire. We explore the RG flow of the complex coupling constant for the dominant low-energy effective interactions, finding flows whose character is qualitatively different when *g* is above or below a critical value, *g*_{c}. Unlike the self-adjoint case, (complex) fixed points exist when *g > g*_{c}, which we show correspond to perfect absorber (or perfect emitter) boundary conditions. We describe experimental consequences for wire-atom interactions and the possibility of observing the anomalous breaking of scale invariance.

## References

- [1]
L. Landau and E. Lifshitz,

*Mechanics*, Elsevier Science (1982). - [2]
K.M. Case,

*Singular potentials*,*Phys. Rev.***80**(1950) 797 [INSPIRE]. - [3]
A.M. Perelomov and V.S. Popov,

*Collapse onto scattering centre in quantum mechanics*,*Teor. Mat. Fiz.***4**(1970) 48 [INSPIRE]. - [4]
S.P. Alliluev,

*The problem of collapse to the center in quantum mechanics*,*JETP***34**(1972) 8. - [5]
R. Jackiw,

*Delta function potentials in two-dimensional and three-dimensional quantum mechanics*, in*Diverse topics in theoretical and mathematical physics*, World Scientific (1991), pp. 25-42. - [6]
K.S. Gupta and S.G. Rajeev,

*Renormalization in quantum mechanics*,*Phys. Rev.***D 48**(1993) 5940 [hep-th/9305052] [INSPIRE]. - [7]
S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire and U. van Kolck,

*Singular potentials and limit cycles*,*Phys. Rev.***A 64**(2001) 042103 [quant-ph/0010073] [INSPIRE]. - [8]
S.A. Coon and B.R. Holstein,

*Anomalies in Quantum Mechanics: the*1*/r*^{2}*Potential*,*Am. J. Phys.***70**(2002) 513 [quant-ph/0202091] [INSPIRE]. - [9]
M. Bawin and S.A. Coon,

*The Singular inverse square potential, limit cycles and selfadjoint extensions*,*Phys. Rev.***A 67**(2003) 042712 [quant-ph/0302199] [INSPIRE]. - [10]
E.J. Mueller and T.-L. Ho,

*Renormalization Group Limit Cycles in Quantum Mechanical Problems*, [cond-mat/0403283]. - [11]
E. Braaten and D. Phillips,

*The Renormalization group limit cycle for the*1*/r*^{2}*potential*,*Phys. Rev.***A 70**(2004) 052111 [hep-th/0403168] [INSPIRE]. - [12]
F. Werner,

*Trapped cold atoms with resonant interactions: unitary gas and three-body problem*, Theses, Université Pierre et Marie Curie — Paris VI, Paris France (2008). - [13]
D. Bouaziz and M. Bawin,

*Singular inverse-square potential: renormalization and self-adjoint extensions for medium to weak coupling*,*Phys. Rev.***A 89**(2014) 022113 [arXiv:1402.5325] [INSPIRE]. - [14]
C.P. Burgess, P. Hayman, M. Williams and L. Zalavari,

*Point-Particle Effective Field Theory I: Classical Renormalization and the Inverse-Square Potential*,*JHEP***04**(2017) 106 [arXiv:1612.07313] [INSPIRE]. - [15]
C.P. Burgess, P. Hayman, M. Rummel, M. Williams and L. Zalavari,

*Point-Particle Effective Field Theory II: Relativistic Effects and Coulomb/Inverse-Square Competition*,*JHEP***07**(2017) 072 [arXiv:1612.07334] [INSPIRE]. - [16]
C.P. Burgess, P. Hayman, M. Rummel and L. Zalavari,

*Point-Particle Effective Field Theory III: Relativistic Fermions and the Dirac Equation*,*JHEP***09**(2017) 007 [arXiv:1706.01063] [INSPIRE]. - [17]
S. Weinberg,

*Phenomenological Lagrangians*,*Physica***A 96**(1979) 327 [INSPIRE]. - [18]
C.P. Burgess,

*Introduction to Effective Field Theory*,*Ann. Rev. Nucl. Part. Sci.***57**(2007) 329 [hep-th/0701053] [INSPIRE]. - [19]
E. Vogt and G.H. Wannier,

*Scattering of Ions by Polarization Forces*,*Phys. Rev.***95**(1954) 1190 [INSPIRE]. - [20]
D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov,

*Conformality Lost*,*Phys. Rev.***D 80**(2009) 125005 [arXiv:0905.4752] [INSPIRE]. - [21]
S. Moroz and R. Schmidt,

*Nonrelativistic inverse square potential, scale anomaly and complex extension*,*Annals Phys.***325**(2010) 491 [arXiv:0909.3477] [INSPIRE]. - [22]
L.D. Landau and L.M. Lifshitz,

*Quantum Mechanics Non-Relativistic Theory. Volume 3*, Third Edition, Butterworth-Heinemann (1981). - [23]
W.D. Goldberger and I.Z. Rothstein,

*Dissipative effects in the worldline approach to black hole dynamics*,*Phys. Rev.***D 73**(2006) 104030 [hep-th/0511133] [INSPIRE]. - [24]
J. Denschlag, G. Umshaus and J. Schmiedmayer,

*Probing a Singular Potential with Cold Atoms: A Neutral Atom and a Charged Wire*,*Phys. Rev. Lett.***81**(1998) 737. - [25]
C. Pethick and H. Smith,

*Bose-Einstein Condensation in Dilute Gases*, Cambridge University Press (2002). - [26]
V. Efimov,

*Energy levels arising form the resonant two-body forces in a three-body system*,*Phys. Lett.***B 33**(1970) 563 [INSPIRE]. - [27]
E. Braaten and H.W. Hammer,

*Universality in few-body systems with large scattering length*,*Phys. Rept.***428**(2006) 259 [cond-mat/0410417] [INSPIRE]. - [28]
N. Iqbal and H. Liu,

*Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm*,*Phys. Rev.***D 79**(2009) 025023 [arXiv:0809.3808] [INSPIRE]. - [29]
W.-J. Li and J.-P. Wu,

*Holographic fermions in charged dilaton black branes*,*Nucl. Phys.***B 867**(2013) 810 [arXiv:1203.0674] [INSPIRE]. - [30]
B. Engquist and A. Majda,

*Absorbing boundary conditions for numerical simulation of waves*,*Proc. Nat. Acad. Sci.***74**(1977) 1765. - [31]
M.J. Gander and L. Halpern,

*Absorbing boundary conditions for the wave equation and parallel computing*,*Math. Comput.***74**(2005) 153. - [32]
H.E. Camblong and C.R. Ordonez,

*Anomaly in conformal quantum mechanics: From molecular physics to black holes*,*Phys. Rev.***D 68**(2003) 125013 [hep-th/0303166] [INSPIRE]. - [33]
H.W. Hammer and B.G. Swingle,

*On the limit cycle for the*1*/r*^{2}*potential in momentum space*,*Annals Phys.***321**(2006) 306 [quant-ph/0503074] [INSPIRE]. - [34]
S. Weinberg,

*Nuclear forces from chiral Lagrangians*,*Phys. Lett.***B 251**(1990) 288 [INSPIRE]. - [35]
D.B. Kaplan, M.J. Savage and M.B. Wise,

*Nucleon-nucleon scattering from effective field theory*,*Nucl. Phys.***B 478**(1996) 629 [nucl-th/9605002] [INSPIRE]. - [36]
T. Mehen and I.W. Stewart,

*A Momentum subtraction scheme for two nucleon effective field theory*,*Phys. Lett.***B 445**(1999) 378 [nucl-th/9809071] [INSPIRE]. - [37]
S.K. Adhikari,

*Quantum scattering in two dimensions*,*Am. J. Phys.***54**(1986) 362. - [38]
K. Meetz,

*Singular potentials in nonrelativistic quantum mechanics*,*Nuovo Cim.***34**(1964) 690. - [39]
A.C. Fonseca, E.F. Redish and P.E. Shanley,

*Efimov effect in an analytically solvable mode*,*Nucl. Phys.***A 320**(1979) 273 [INSPIRE]. - [40]
T. Kraemer et al.,

*Evidence for Efimov quantum states in an ultracold gas of caesium atoms*,*Nature***440**(2006) 315. - [41]
E. Braaten and H.W. Hammer,

*Efimov Physics in Cold Atoms*,*Annals Phys.***322**(2007) 120 [cond-mat/0612123] [INSPIRE]. - [42]
L. Platter,

*Few-Body Systems and the Pionless Effective Field Theory*, in proceedings of the*6th International Workshop on Chiral Dynamics (CD09)*, Bern, Switzerland, 6-10 July 2009, p. 104 [PoS(CD09)104] [arXiv:0910.0031] [INSPIRE]. - [43]
H.W. Hammer and L. Platter,

*Efimov states in nuclear and particle physics*,*Ann. Rev. Nucl. Part. Sci.***60**(2010) 207 [arXiv:1001.1981] [INSPIRE]. - [44]
H.W. Hammer and L. Platter,

*Efimov physics from a renormalization group perspective*,*Philos. Trans. Roy. Soc. Lond.***A 369**(2011) 2679. - [45]
D.J. MacNeill and F. Zhou,

*Pauli blocking effect on Efimov states near a feshbach resonance*,*Phys. Rev. Lett.***106**(2011) 145301. - [46]
R. Grimm, M. Weidemüller and Y.B. Ovchinnikov,

*Optical dipole traps for neutral atoms*,*Adv. At. Mol. Opt. Phys.***42**(2000) 95. - [47]
R. Plestid, C. Burgess and D.H.J. O’Dell,

*Tunable quantum anomaly with cold atoms in an inverse square potential*, in preparation. - [48]
C.P. Burgess, P. Hayman, M. Rummel and L. Zalavari,

*Reduced Theoretical Error for QED Tests with*^{4}*He*^{+}*Spectroscopy*, arXiv:1708.09768 [INSPIRE]. - [49]
J. Sakurai,

*Modern Quantum Mechanics*, Addison-Wesely (1988). - [50]
F.W.J. Olver and National Institute of Standards and Technology (U.S.),

*NIST Handbook of Mathematical Functions*, Cambridge University Press (2010). - [51]
W.D. Goldberger and I.Z. Rothstein,

*Dissipative effects in the worldline approach to black hole dynamics*,*Phys. Rev.***D 73**(2006) 104030 [hep-th/0511133] [INSPIRE].

###
**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## Author information

### Affiliations

### Corresponding author

## Additional information

ArXiv ePrint: 1804.10324

## Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

## About this article

### Cite this article

Plestid, R., Burgess, C.P. & O’Dell, D.H.J. Fall to the centre in atom traps and point-particle EFT for absorptive systems.
*J. High Energ. Phys.* **2018, **59 (2018). https://doi.org/10.1007/JHEP08(2018)059

Received:

Accepted:

Published:

### Keywords

- Effective Field Theories
- Renormalization Group
- Nonperturbative Effects