Fall to the centre in atom traps and point-particle EFT for absorptive systems


Polarizable atoms interacting with a charged wire do so through an inverse-square potential, V = −g/r2. This system is known to realize scale invariance in a nontrivial way and to be subject to ambiguities associated with the choice of boundary condition at the origin, often termed the problem of ‘fall to the center’. Point-particle effective field theory (PPEFT) provides a systematic framework for determining the boundary condition in terms of the properties of the source residing at the origin. We apply this formalism to the charged-wire/polarizable-atom problem, finding a result that is not a self-adjoint extension because of absorption of atoms by the wire. We explore the RG flow of the complex coupling constant for the dominant low-energy effective interactions, finding flows whose character is qualitatively different when g is above or below a critical value, gc. Unlike the self-adjoint case, (complex) fixed points exist when g > gc, which we show correspond to perfect absorber (or perfect emitter) boundary conditions. We describe experimental consequences for wire-atom interactions and the possibility of observing the anomalous breaking of scale invariance.

A preprint version of the article is available at ArXiv.


  1. [1]

    L. Landau and E. Lifshitz, Mechanics, Elsevier Science (1982).

  2. [2]

    K.M. Case, Singular potentials, Phys. Rev. 80 (1950) 797 [INSPIRE].

  3. [3]

    A.M. Perelomov and V.S. Popov, Collapse onto scattering centre in quantum mechanics, Teor. Mat. Fiz. 4 (1970) 48 [INSPIRE].

    Article  Google Scholar 

  4. [4]

    S.P. Alliluev, The problem of collapse to the center in quantum mechanics, JETP 34 (1972) 8.

    ADS  Google Scholar 

  5. [5]

    R. Jackiw, Delta function potentials in two-dimensional and three-dimensional quantum mechanics, in Diverse topics in theoretical and mathematical physics, World Scientific (1991), pp. 25-42.

  6. [6]

    K.S. Gupta and S.G. Rajeev, Renormalization in quantum mechanics, Phys. Rev. D 48 (1993) 5940 [hep-th/9305052] [INSPIRE].

  7. [7]

    S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire and U. van Kolck, Singular potentials and limit cycles, Phys. Rev. A 64 (2001) 042103 [quant-ph/0010073] [INSPIRE].

  8. [8]

    S.A. Coon and B.R. Holstein, Anomalies in Quantum Mechanics: the 1/r 2 Potential, Am. J. Phys. 70 (2002) 513 [quant-ph/0202091] [INSPIRE].

  9. [9]

    M. Bawin and S.A. Coon, The Singular inverse square potential, limit cycles and selfadjoint extensions, Phys. Rev. A 67 (2003) 042712 [quant-ph/0302199] [INSPIRE].

  10. [10]

    E.J. Mueller and T.-L. Ho, Renormalization Group Limit Cycles in Quantum Mechanical Problems, [cond-mat/0403283].

  11. [11]

    E. Braaten and D. Phillips, The Renormalization group limit cycle for the 1/r 2 potential, Phys. Rev. A 70 (2004) 052111 [hep-th/0403168] [INSPIRE].

  12. [12]

    F. Werner, Trapped cold atoms with resonant interactions: unitary gas and three-body problem, Theses, Université Pierre et Marie Curie — Paris VI, Paris France (2008).

  13. [13]

    D. Bouaziz and M. Bawin, Singular inverse-square potential: renormalization and self-adjoint extensions for medium to weak coupling, Phys. Rev. A 89 (2014) 022113 [arXiv:1402.5325] [INSPIRE].

  14. [14]

    C.P. Burgess, P. Hayman, M. Williams and L. Zalavari, Point-Particle Effective Field Theory I: Classical Renormalization and the Inverse-Square Potential, JHEP 04 (2017) 106 [arXiv:1612.07313] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    C.P. Burgess, P. Hayman, M. Rummel, M. Williams and L. Zalavari, Point-Particle Effective Field Theory II: Relativistic Effects and Coulomb/Inverse-Square Competition, JHEP 07 (2017) 072 [arXiv:1612.07334] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    C.P. Burgess, P. Hayman, M. Rummel and L. Zalavari, Point-Particle Effective Field Theory III: Relativistic Fermions and the Dirac Equation, JHEP 09 (2017) 007 [arXiv:1706.01063] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

  18. [18]

    C.P. Burgess, Introduction to Effective Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].

  19. [19]

    E. Vogt and G.H. Wannier, Scattering of Ions by Polarization Forces, Phys. Rev. 95 (1954) 1190 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  20. [20]

    D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].

  21. [21]

    S. Moroz and R. Schmidt, Nonrelativistic inverse square potential, scale anomaly and complex extension, Annals Phys. 325 (2010) 491 [arXiv:0909.3477] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. [22]

    L.D. Landau and L.M. Lifshitz, Quantum Mechanics Non-Relativistic Theory. Volume 3, Third Edition, Butterworth-Heinemann (1981).

  23. [23]

    W.D. Goldberger and I.Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D 73 (2006) 104030 [hep-th/0511133] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    J. Denschlag, G. Umshaus and J. Schmiedmayer, Probing a Singular Potential with Cold Atoms: A Neutral Atom and a Charged Wire, Phys. Rev. Lett. 81 (1998) 737.

    ADS  Article  Google Scholar 

  25. [25]

    C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press (2002).

  26. [26]

    V. Efimov, Energy levels arising form the resonant two-body forces in a three-body system, Phys. Lett. B 33 (1970) 563 [INSPIRE].

  27. [27]

    E. Braaten and H.W. Hammer, Universality in few-body systems with large scattering length, Phys. Rept. 428 (2006) 259 [cond-mat/0410417] [INSPIRE].

  28. [28]

    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

  29. [29]

    W.-J. Li and J.-P. Wu, Holographic fermions in charged dilaton black branes, Nucl. Phys. B 867 (2013) 810 [arXiv:1203.0674] [INSPIRE].

  30. [30]

    B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves, Proc. Nat. Acad. Sci. 74 (1977) 1765.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    M.J. Gander and L. Halpern, Absorbing boundary conditions for the wave equation and parallel computing, Math. Comput. 74 (2005) 153.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    H.E. Camblong and C.R. Ordonez, Anomaly in conformal quantum mechanics: From molecular physics to black holes, Phys. Rev. D 68 (2003) 125013 [hep-th/0303166] [INSPIRE].

  33. [33]

    H.W. Hammer and B.G. Swingle, On the limit cycle for the 1/r 2 potential in momentum space, Annals Phys. 321 (2006) 306 [quant-ph/0503074] [INSPIRE].

  34. [34]

    S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B 251 (1990) 288 [INSPIRE].

  35. [35]

    D.B. Kaplan, M.J. Savage and M.B. Wise, Nucleon-nucleon scattering from effective field theory, Nucl. Phys. B 478 (1996) 629 [nucl-th/9605002] [INSPIRE].

  36. [36]

    T. Mehen and I.W. Stewart, A Momentum subtraction scheme for two nucleon effective field theory, Phys. Lett. B 445 (1999) 378 [nucl-th/9809071] [INSPIRE].

  37. [37]

    S.K. Adhikari, Quantum scattering in two dimensions, Am. J. Phys. 54 (1986) 362.

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    K. Meetz, Singular potentials in nonrelativistic quantum mechanics, Nuovo Cim. 34 (1964) 690.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    A.C. Fonseca, E.F. Redish and P.E. Shanley, Efimov effect in an analytically solvable mode, Nucl. Phys. A 320 (1979) 273 [INSPIRE].

  40. [40]

    T. Kraemer et al., Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature 440 (2006) 315.

    ADS  Article  Google Scholar 

  41. [41]

    E. Braaten and H.W. Hammer, Efimov Physics in Cold Atoms, Annals Phys. 322 (2007) 120 [cond-mat/0612123] [INSPIRE].

  42. [42]

    L. Platter, Few-Body Systems and the Pionless Effective Field Theory, in proceedings of the 6th International Workshop on Chiral Dynamics (CD09), Bern, Switzerland, 6-10 July 2009, p. 104 [PoS(CD09)104] [arXiv:0910.0031] [INSPIRE].

  43. [43]

    H.W. Hammer and L. Platter, Efimov states in nuclear and particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 207 [arXiv:1001.1981] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    H.W. Hammer and L. Platter, Efimov physics from a renormalization group perspective, Philos. Trans. Roy. Soc. Lond. A 369 (2011) 2679.

  45. [45]

    D.J. MacNeill and F. Zhou, Pauli blocking effect on Efimov states near a feshbach resonance, Phys. Rev. Lett. 106 (2011) 145301.

    ADS  Article  Google Scholar 

  46. [46]

    R. Grimm, M. Weidemüller and Y.B. Ovchinnikov, Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys. 42 (2000) 95.

    ADS  Article  Google Scholar 

  47. [47]

    R. Plestid, C. Burgess and D.H.J. O’Dell, Tunable quantum anomaly with cold atoms in an inverse square potential, in preparation.

  48. [48]

    C.P. Burgess, P. Hayman, M. Rummel and L. Zalavari, Reduced Theoretical Error for QED Tests with 4 He + Spectroscopy, arXiv:1708.09768 [INSPIRE].

  49. [49]

    J. Sakurai, Modern Quantum Mechanics, Addison-Wesely (1988).

  50. [50]

    F.W.J. Olver and National Institute of Standards and Technology (U.S.), NIST Handbook of Mathematical Functions, Cambridge University Press (2010).

  51. [51]

    W.D. Goldberger and I.Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D 73 (2006) 104030 [hep-th/0511133] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to R. Plestid.

Additional information

ArXiv ePrint: 1804.10324

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plestid, R., Burgess, C.P. & O’Dell, D.H.J. Fall to the centre in atom traps and point-particle EFT for absorptive systems. J. High Energ. Phys. 2018, 59 (2018). https://doi.org/10.1007/JHEP08(2018)059

Download citation


  • Effective Field Theories
  • Renormalization Group
  • Nonperturbative Effects