Skip to main content

Advertisement

SpringerLink
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
Download PDF
Download PDF
  • Open Access
  • Published: 25 August 2016

Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

  • Vittorio Del Duca1,
  • Stefan Druc2,
  • James Drummond2,
  • Claude Duhr3,4,
  • Falko Dulat5,
  • Robin Marzucca4,
  • Georgios Papathanasiou5 &
  • …
  • Bram Verbeek4 

Journal of High Energy Physics volume 2016, Article number: 152 (2016) Cite this article

  • 341 Accesses

  • 46 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We show that scattering amplitudes in planar \( \mathcal{N}=4 \) Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

    Google Scholar 

  12. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].

    ADS  Google Scholar 

  13. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping null polygon Wilson loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Sever, P. Vieira and T. Wang, OPE for super loops, JHEP 11 (2011) 051 [arXiv:1108.1575] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory,Phys. Rev. Lett. 111(2013) 091602 [arXiv:1303.1396] [INSPIRE].

    Article  ADS  Google Scholar 

  24. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].

  25. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].

  26. B. Basso, A. Sever and P. Vieira, Collinear limit of scattering amplitudes at strong coupling, Phys. Rev. Lett. 113 (2014) 261604 [arXiv:1405.6350] [INSPIRE].

    Article  ADS  Google Scholar 

  27. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix IV. Gluons and fusion, JHEP 09 (2014) 149 [arXiv:1407.1736] [INSPIRE].

  28. B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all helicity amplitudes, JHEP 08 (2015) 018 [arXiv:1412.1132] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all helicity amplitudes II. Form factors and data analysis, JHEP 12 (2015) 088 [arXiv:1508.02987] [INSPIRE].

  30. B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar N = 4 SYM theory at finite coupling, arXiv:1508.03045 [INSPIRE].

  31. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].

    Article  ADS  Google Scholar 

  33. K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, J. Phys. A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  35. S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002) 497 [math/0104151].

  36. S. Fomin and A. Zelevinsky, Cluster algebras II: finite type classification, Invent. Math. 154 (2003) 63 [math/0208229].

  37. J.S. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc. 92 (2006) 345.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003) 899 [math/0208033].

  39. B. Keller, Cluster algebras, quiver representations and triangulated categories, in Triangulated categories, Cambridge University Press, Cambridge U.K. (2003).

  40. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].

  41. F.C.S. Brown, Multiple zeta values and periods of moduli spaces ℳ0,n (ℝ), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].

  42. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Scattering amplitudes and the positive Grassmannian, Cambridge University Press, Cambridge U.K. (2012).

    MATH  Google Scholar 

  43. V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].

    Article  ADS  Google Scholar 

  50. L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP 01 (2016) 053 [arXiv:1509.08127] [INSPIRE].

    Article  Google Scholar 

  52. J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude in N = 4 SYM, JHEP 08 (2014) 154 [arXiv:1406.2055] [INSPIRE].

    Article  ADS  Google Scholar 

  53. V. Del Duca, C. Duhr and V.A. Smirnov, A two-loop octagon Wilson loop in N = 4 SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. P. Heslop and V.V. Khoze, Analytic results for MHV Wilson loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. S. Caron-Huot and S. He, Three-loop octagons and n-gons in maximally supersymmetric Yang-Mills theory, JHEP 08 (2013) 101 [arXiv:1305.2781] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].

  57. C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].

    Article  ADS  Google Scholar 

  61. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].

  62. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  63. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

  64. V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].

  65. G. Camici and M. Ciafaloni, Irreducible part of the next-to-leading BFKL kernel, Phys. Lett. B 412 (1997) 396 [Erratum ibid. B 417 (1998) 390] [hep-ph/9707390] [INSPIRE].

  66. M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].

  67. J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].

    ADS  Google Scholar 

  68. J. Bartels, L.N. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].

    Article  ADS  Google Scholar 

  69. R.C. Brower, H. Nastase, H.J. Schnitzer and C.-I. Tan, Implications of multi-Regge limits for the Bern-Dixon-Smirnov conjecture, Nucl. Phys. B 814 (2009) 293 [arXiv:0801.3891] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. R.C. Brower, H. Nastase, H.J. Schnitzer and C.-I. Tan, Analyticity for multi-Regge limits of the Bern-Dixon-Smirnov amplitudes, Nucl. Phys. B 822 (2009) 301 [arXiv:0809.1632] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [arXiv:0809.1822] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Y. Hatsuda, Wilson loop OPE, analytic continuation and multi-Regge limit, JHEP 10 (2014) 38 [arXiv:1404.6506] [INSPIRE].

    Article  ADS  Google Scholar 

  73. B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP 01 (2015) 027 [arXiv:1407.3766] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J.M. Drummond and G. Papathanasiou, Hexagon OPE resummation and multi-Regge kinematics, JHEP 02 (2016) 185 [arXiv:1507.08982] [INSPIRE].

    Article  ADS  Google Scholar 

  75. J. Bartels, J. Kotanski and V. Schomerus, Excited hexagon Wilson loops for strongly coupled N = 4 SYM, JHEP 01 (2011) 096 [arXiv:1009.3938] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The excited hexagon reloaded, arXiv:1311.1512 [INSPIRE].

  77. L.N. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in N = 4 super Yang-Mills, Phys. Rev. D 83 (2011) 125001 [arXiv:1011.2673] [INSPIRE].

    ADS  Google Scholar 

  78. L.N. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in N = 4 SUSY, Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016] [INSPIRE].

    ADS  Google Scholar 

  79. L. Lipatov, A. Prygarin and H.J. Schnitzer, The multi-Regge limit of NMHV amplitudes in N = 4 SYM theory, JHEP 01(2013) 068 [arXiv:1205.0186] [INSPIRE].

    Article  ADS  Google Scholar 

  80. L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].

    Article  ADS  Google Scholar 

  81. J. Pennington, The six-point remainder function to all loop orders in the multi-Regge limit, JHEP 01 (2013) 059 [arXiv:1209.5357] [INSPIRE].

    Article  ADS  Google Scholar 

  82. J. Broedel and M. Sprenger, Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space, JHEP 05 (2016) 055 [arXiv:1512.04963] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  83. F.C.S. Brown, Single-valued multiple polylogarithms in one variable, Compt. Rend. Acad. Sci. Paris Ser. I 338 (2004) 527.

    Article  MATH  Google Scholar 

  84. A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, All two-loop MHV amplitudes in multi-Regge kinematics from applied symbology, Phys. Rev. D 85 (2012) 085019 [arXiv:1112.6365] [INSPIRE].

    ADS  Google Scholar 

  85. J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].

    ADS  Google Scholar 

  86. T. Bargheer, G. Papathanasiou and V. Schomerus, The two-loop symbol of all multi-Regge regions, JHEP 05 (2016) 012 [arXiv:1512.07620] [INSPIRE].

    Article  ADS  Google Scholar 

  87. J. Bartels, V. Schomerus and M. Sprenger, Multi-Regge limit of the n-gluon bubble ansatz, JHEP 11 (2012) 145 [arXiv:1207.4204] [INSPIRE].

    Article  ADS  Google Scholar 

  88. J. Bartels, V. Schomerus and M. Sprenger, Heptagon amplitude in the multi-Regge regime, JHEP 10 (2014) 067 [arXiv:1405.3658] [INSPIRE].

    Article  ADS  Google Scholar 

  89. J. Bartels, V. Schomerus and M. Sprenger, The Bethe roots of Regge cuts in strongly coupled N = 4 SYM theory, JHEP 07 (2015) 098 [arXiv:1411.2594] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  90. V. Del Duca, L.J. Dixon, C. Duhr and J. Pennington, The BFKL equation, Mueller-Navelet jets and single-valued harmonic polylogarithms, JHEP 02 (2014) 086 [arXiv:1309.6647] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. V.S. Fadin and L.N. Lipatov, BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N = 4 SUSY, Phys. Lett. B 706 (2012) 470 [arXiv:1111.0782] [INSPIRE].

    Article  ADS  Google Scholar 

  92. V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [INSPIRE].

  93. J. Bartels, A. Kormilitzin and L. Lipatov, Analytic structure of the n = 7 scattering amplitude in N = 4 SYM theory in the multi-Regge kinematics: conformal Regge pole contribution, Phys. Rev. D 89 (2014) 065002 [arXiv:1311.2061] [INSPIRE].

    ADS  Google Scholar 

  94. J. Bartels, A. Kormilitzin and L.N. Lipatov, Analytic structure of the n = 7 scattering amplitude in N = 4 theory in multi-Regge kinematics: conformal Regge cut contribution, Phys. Rev. D 91 (2015) 045005 [arXiv:1411.2294] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  95. L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].

  96. V.S. Fadin, R. Fiore, M.G. Kozlov and A.V. Reznichenko, Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA, Phys. Lett. B 639 (2006) 74 [hep-ph/0602006] [INSPIRE].

  97. S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].

    Article  ADS  Google Scholar 

  98. D. Parker, A. Scherlis, M. Spradlin and A. Volovich, Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes, JHEP 11 (2015) 136 [arXiv:1507.01950] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  99. F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, http://www.ihes.fr/~brown/RHpaper5.pdf.

  100. F. Brown, Single-valued motivic periods and multiple zeta values, SIGMA 2 (2014) e25 [arXiv:1309.5309] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  101. F.C.S. Brown, Notes on motivic periods, arXiv:1512.06410.

  102. E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  103. J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE].

  104. S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].

  105. S. Weinzierl, Symbolic expansion of transcendental functions, Comput. Phys. Commun. 145 (2002) 357 [math-ph/0201011] [INSPIRE].

  106. S. Moch and P. Uwer, XSummer: transcendental functions and symbolic summation in form, Comput. Phys. Commun. 174 (2006) 759 [math-ph/0508008] [INSPIRE].

  107. O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  108. F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [INSPIRE].

  109. S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  110. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. D. Nandan, M.F. Paulos, M. Spradlin and A. Volovich, Star integrals, convolutions and simplices, JHEP 05 (2013) 105 [arXiv:1301.2500] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. G. Papathanasiou, Hexagon Wilson loop OPE and harmonic polylogarithms, JHEP 11 (2013) 150 [arXiv:1310.5735] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  113. T. Bargheer, Systematics of the multi-Regge three-loop symbol, arXiv:1606.07640 [INSPIRE].

  114. J. Broedel, M. Sprenger and A.T. Orjuela, Towards single-valued polylogarithms in two variables for the seven-point remainder function in multi-Regge-kinematics, arXiv:1606.08411 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, ETH Zürich, Hönggerberg, 8093, Zürich, Switzerland

    Vittorio Del Duca

  2. School of Physics & Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

    Stefan Druc & James Drummond

  3. Theoretical Physics Department, CERN, Route de Meyrin, CH-1211, Geneva 23, Switzerland

    Claude Duhr

  4. Center for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, Chemin du Cyclotron 2, 1348, Louvain-La-Neuve, Belgium

    Claude Duhr, Robin Marzucca & Bram Verbeek

  5. SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94309, USA

    Falko Dulat & Georgios Papathanasiou

Authors
  1. Vittorio Del Duca
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stefan Druc
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. James Drummond
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Claude Duhr
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Falko Dulat
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Robin Marzucca
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Georgios Papathanasiou
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Bram Verbeek
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Claude Duhr.

Additional information

ArXiv ePrint: 1606.08807

On leave from Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Italy. (Vittorio Del Duca)

On leave from the "Fonds National de la Recherche Scientifique" (FNRS), Belgium. (Claude Duhr)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Del Duca, V., Druc, S., Drummond, J. et al. Multi-Regge kinematics and the moduli space of Riemann spheres with marked points. J. High Energ. Phys. 2016, 152 (2016). https://doi.org/10.1007/JHEP08(2016)152

Download citation

  • Received: 09 July 2016

  • Accepted: 05 August 2016

  • Published: 25 August 2016

  • DOI: https://doi.org/10.1007/JHEP08(2016)152

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetric gauge theory
  • Gauge Symmetry
  • Extended Supersymmetry
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.