Abstract
We study gravity duals to a broad class of \( \mathcal{N} \) = 2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1) × U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].
D. Martelli, A. Passias and J. Sparks, The gravity dual of supersymmetric gauge theories on a squashed three-sphere, Nucl. Phys. B 864 (2012) 840 [arXiv:1110.6400] [INSPIRE].
N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].
D. Martelli and J. Sparks, The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere, Nucl. Phys. B 866 (2013) 72 [arXiv:1111.6930] [INSPIRE].
D. Martelli, A. Passias and J. Sparks, The supersymmetric NUTs and bolts of holography, Nucl. Phys. B 876 (2013) 810 [arXiv:1212.4618] [INSPIRE].
D. Martelli and A. Passias, The gravity dual of supersymmetric gauge theories on a two-parameter deformed three-sphere, Nucl. Phys. B 877 (2013) 51 [arXiv:1306.3893] [INSPIRE].
X. Huang, S.-J. Rey and Y. Zhou, Three-dimensional SCFT on conic space as hologram of charged topological black hole, JHEP 03 (2014) 127 [arXiv:1401.5421] [INSPIRE].
T. Nishioka, The gravity dual of supersymmetric Rényi entropy, JHEP 07 (2014) 061 [arXiv:1401.6764] [INSPIRE].
T. Nishioka and I. Yaakov, Supersymmetric Rényi entropy, JHEP 10 (2013) 155 [arXiv:1306.2958] [INSPIRE].
D. Cassani and D. Martelli, The gravity dual of supersymmetric gauge theories on a squashed S 1 × S 3, JHEP 08 (2014) 044 [arXiv:1402.2278] [INSPIRE].
L.F. Alday, M. Fluder, P. Richmond and J. Sparks, Gravity dual of supersymmetric gauge theories on a squashed five-sphere, Phys. Rev. Lett. 113 (2014) 141601 [arXiv:1404.1925] [INSPIRE].
D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].
J.G. Russo and K. Zarembo, Large-N limit of N = 2 SU(N ) gauge theories from localization, JHEP 10 (2012) 082 [arXiv:1207.3806] [INSPIRE].
A. Buchel, J.G. Russo and K. Zarembo, Rigorous test of non-conformal holography: Wilson loops in N = 2∗ theory, JHEP 03 (2013) 062 [arXiv:1301.1597] [INSPIRE].
N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for N = 2∗ on S 4, JHEP 07 (2014) 001 [arXiv:1311.1508] [INSPIRE].
L.F. Alday, D. Martelli, P. Richmond and J. Sparks, Localization on three-manifolds, JHEP 10 (2013) 095 [arXiv:1307.6848] [INSPIRE].
Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The geometry of supersymmetric partition functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].
N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].
C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].
D.M.J. Calderbank and H. Pedersen, Selfdual Einstein metrics with torus symmetry, J. Diff. Geom. 60 (2002) 485 [math/0105263] [INSPIRE].
D.Z. Freedman and A.K. Das, Gauge internal symmetry in extended supergravity, Nucl. Phys. B 120 (1977) 221 [INSPIRE].
M. Dunajski, J.B. Gutowski, W.A. Sabra and P. Tod, Cosmological Einstein-Maxwell instantons and Euclidean supersymmetry: beyond self-duality, JHEP 03 (2011) 131 [arXiv:1012.1326] [INSPIRE].
M. Dunajski, J. Gutowski, W. Sabra and P. Tod, Cosmological Einstein-Maxwell instantons and Euclidean supersymmetry: anti-self-dual solutions, Class. Quant. Grav. 28 (2011) 025007 [arXiv:1006.5149] [INSPIRE].
C. Lebrun, On complete quaternionic Kahler manifolds, Duke Math. J. 63 (1991) 723.
K.P. Tod, The SU(∞)-Toda field equation and special four-dimensional metrics, in Geometry and physics, Aarhus Denmark (1995), pg. 307 and in Lecture Notes in Pure and Appl. Math. 184, Dekker, New York U.S.A. (1997) [INSPIRE].
J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].
D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [INSPIRE].
R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].
K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].
M.T. Anderson, L 2 curvature and volume renormalization of AHE metrics on 4-manifolds, Math. Res. Lett. 8 (2001) 171 [math/0011051].
M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Camb. Philos. Soc. 77 (1975) 43.
N.J. Hitchin, Einstein metrics and the eta-invariant, Boll. Union. Mat. Ital. B 11 (1997) 95.
M.T. Anderson, Geometric aspects of the AdS/CFT correspondence, IRMA Lect. Math. Theor. Phys. 8 (2005) 1 [hep-th/0403087] [INSPIRE].
N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974) 1.
J.F. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].
O. Biquard, Metriques autoduales sur la boule (in French), Preprint IRMA, Strasbourg France (2000) [math/0010188].
C. Fefferman and C.R. Graham, Conformal invariants, in The Mathematical Heritage of Elie Cartan, Lyon (1984), Asterisque, France (1985), pg. 95.
M.T. Anderson, On the structure of conformally compact Einstein metrics, math/0402198.
D.M.J. Calderbank and M.A. Singer, Einstein metrics and complex singularities, Invent. Math. 156 (2004) 405 [math/0206229] [INSPIRE].
D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [INSPIRE].
A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP 11 (2005) 019 [hep-th/0506232] [INSPIRE].
D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].
J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].
D. Farquet and J. Sparks, Wilson loops on three-manifolds and their M 2-brane duals, JHEP 12 (2014) 173 [arXiv:1406.2493] [INSPIRE].
D. Farquet and J. Sparks, Wilson loops and the geometry of matrix models in AdS 4 /CFT 3, JHEP 01 (2014) 083 [arXiv:1304.0784] [INSPIRE].
V. Apostolov, D.M.J. Calderbank and P. Gauduchon, The geometry of weakly selfdual Kähler surfaces, Composit. Math. 135 (2003) 279 [math/0104233].
D. Martelli and J. Sparks, Toric Sasaki-Einstein metrics on S 2 × S 3, Phys. Lett. B 621 (2005) 208 [hep-th/0505027] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1404.0268
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Farquet, D., Lorenzen, J., Martelli, D. et al. Gravity duals of supersymmetric gauge theories on three-manifolds. J. High Energ. Phys. 2016, 80 (2016). https://doi.org/10.1007/JHEP08(2016)080
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2016)080