Advertisement

Towards geometric D6-brane model building on non-factorisable toroidal 4-orbifolds

  • Mikel Berasaluce-GonzálezEmail author
  • Gabriele Honecker
  • Alexander Seifert
Open Access
Regular Article - Theoretical Physics

Abstract

We present a geometric approach to D-brane model building on the non-factorisable torus backgrounds of T 6/ 4, which are A 3 × A 3 and A 3 × A 1 × B 2. Based on the counting of ‘short’ supersymmetric three-cycles per complex structure vev, the number of physically inequivalent lattice orientations with respect to the anti-holomorphic involution ℛ of the Type IIA/Ωℛ orientifold can be reduced to three for the A 3 ×A 3 lattice and four for the A 3 × A 1 × B 2 lattice. While four independent three-cycles on A 3 × A 3 cannot accommodate phenomenologically interesting global models with a chiral spectrum, the eight-dimensional space of three-cycles on A 3 × A 1 × B 2 is rich enough to provide for particle physics models, with several globally consistent two- and four-generation Pati-Salam models presented here.

We further show that for fractional sLag three-cycles, the compact geometry can be rewritten in a (T 2)3 factorised form, paving the way for a generalisation of known CFT methods to determine the vector-like spectrum and to derive the low-energy effective action for open string states.

Keywords

D-branes Superstring Vacua Differential and Algebraic Geometry Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    L.E. Ibáñez, J.E. Kim, H.P. Nilles and F. Quevedo, Orbifold compactifications with three families of SU(3) × SU(2) × U(1)n, Phys. Lett. B 191 (1987) 282 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape (II): completing the search for MSSM vacua in a Z 6 orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    H.P. Nilles, S. Ramos-Sanchez, P.K.S. Vaudrevange and A. Wingerter, The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    K.-S. Choi, S. Groot Nibbelink and M. Trapletti, Heterotic SO(32) model building in four dimensions, JHEP 12 (2004) 063 [hep-th/0410232] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Bak, V. Bouchard and R. Donagi, Exploring a new peak in the heterotic landscape, JHEP 06 (2010) 108 [arXiv:0811.1242] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  10. [10]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle standard models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A comprehensive scan for heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Groot Nibbelink, O. Loukas, F. Ruehle and P.K.S. Vaudrevange, Infinite number of MSSMs from heterotic line bundles?, Phys. Rev. D 92 (2015) 046002 [arXiv:1506.00879] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Polchinski and E. Witten, Evidence for heterotic-type I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J.H. Schwarz, The power of M-theory, Phys. Lett. B 367 (1996) 97 [hep-th/9510086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    L.E. Ibáñez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012) [INSPIRE].
  19. [19]
    D. Joyce, Lectures on Calabi-Yau and special Lagrangian geometry, math.DG/0108088 [INSPIRE].
  20. [20]
    D. Joyce, Lectures on special Lagrangian geometry, math.DG/0111111.
  21. [21]
    E. Palti, Model building with intersecting D6-branes on smooth Calabi-Yau manifolds, JHEP 04 (2009) 099 [arXiv:0902.3546] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].MathSciNetGoogle Scholar
  23. [23]
    D. Cremades, L.E. Ibáñez and F. Marchesano, SUSY quivers, intersecting branes and the modest hierarchy problem, JHEP 07 (2002) 009 [hep-th/0201205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Intersecting brane models of particle physics and the Higgs mechanism, JHEP 07 (2002) 022 [hep-th/0203160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Cvetič, G. Shiu and A.M. Uranga, Three family supersymmetric standard-like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 [hep-th/0107143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Cvetič, G. Shiu and A.M. Uranga, Chiral four-dimensional N = 1 supersymmetric type 2A orientifolds from intersecting D6 branes, Nucl. Phys. B 615 (2001) 3 [hep-th/0107166] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst and T. Weigand, One in a billion: MSSM-like D-brane statistics, JHEP 01 (2006) 004 [hep-th/0510170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    F. Gmeiner and M. Stein, Statistics of SU(5) D-brane models on a type-II orientifold, Phys. Rev. D 73 (2006) 126008 [hep-th/0603019] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    G. Honecker, Chiral supersymmetric models on an orientifold of Z 4 × Z 2 with intersecting D6-branes, Nucl. Phys. B 666 (2003) 175 [hep-th/0303015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    G. Honecker, Supersymmetric intersecting D6-branes and chiral models on the T 6/( 4 ×  2) orbifold, in Proceedings of String phenomenology. 2nd International Conference, Durham U.K., 29 Jul-4 Aug 2003, pp. 191-198.Google Scholar
  33. [33]
    G. Honecker, Chiral N = 1 4D orientifolds with D-branes at angles, Mod. Phys. Lett. A 19 (2004) 1863 [hep-th/0407181] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    R. Blumenhagen, L. Görlich and T. Ott, Supersymmetric intersecting branes on the type IIA T 6 /Z 4 orientifold, JHEP 01 (2003) 021 [hep-th/0211059] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Honecker and T. Ott, Getting just the supersymmetric standard model at intersecting branes on the ℤ 6 orientifold, Phys. Rev. D 70 (2004) 126010 [Erratum ibid. D 71 (2005) 069902] [hep-th/0404055] [INSPIRE].
  36. [36]
    F. Gmeiner, D. Lüst and M. Stein, Statistics of intersecting D-brane models on T6/ 6, JHEP 05 (2007) 018 [hep-th/0703011] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Gmeiner and G. Honecker, Complete gauge threshold corrections for intersecting fractional D6-branes: the ℤ 6 and ℤ 6' standard models, Nucl. Phys. B 829 (2010) 225 [arXiv:0910.0843] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Bailin and A. Love, Towards the supersymmetric standard model from intersecting D6-branes on the ℤ 6' orientifold, Nucl. Phys. B 755 (2006) 79 [Erratum ibid. B 783 (2007) 176] [hep-th/0603172] [INSPIRE].
  39. [39]
    D. Bailin and A. Love, Almost the supersymmetric standard model from intersecting D6-branes on the ℤ 6' orientifold, Phys. Lett. B 651 (2007) 324 [Erratum ibid. B 658 (2008) 292] [arXiv:0705.0646] [INSPIRE].
  40. [40]
    F. Gmeiner and G. Honecker, Mapping an island in the landscape, JHEP 09 (2007) 128 [arXiv:0708.2285] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    D. Bailin and A. Love, Constructing the supersymmetric standard model from intersecting D6-branes on the ℤ 6' orientifold, Nucl. Phys. B 809 (2009) 64 [arXiv:0801.3385] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    F. Gmeiner and G. Honecker, Millions of standard models on ℤ 6' ?, JHEP 07 (2008) 052 [arXiv:0806.3039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    D. Bailin and A. Love, Intersecting D6-branes on the ℤ 12 -II orientifold, JHEP 01 (2014) 009 [arXiv:1310.8215] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Blumenhagen, M. Cvetič, F. Marchesano and G. Shiu, Chiral D-brane models with frozen open string moduli, JHEP 03 (2005) 050 [hep-th/0502095] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    S. Förste and G. Honecker, Rigid D6-branes on T 6/( 2 ×  2M × Ωℛ) with discrete torsion, JHEP 01 (2011) 091 [arXiv:1010.6070] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G. Honecker, M. Ripka and W. Staessens, The importance of being rigid: D6-brane model building on T 6/ 2 ×  6' with discrete torsion, Nucl. Phys. B 868 (2013) 156 [arXiv:1209.3010] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    G. Honecker and W. Staessens, D6-brane model building and discrete symmetries on T 6/( 2 ×  6 × Ωℛ) with discrete torsion, PoS (Corfu2012) 107 [arXiv:1303.6845] [INSPIRE].
  48. [48]
    J. Ecker, G. Honecker and W. Staessens, Rigour and rigidity: systematics on particle physics D6-brane models on ℤ 2 ×  6, Fortschr. Phys. 62 (2014) 981 [arXiv:1409.1236] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    J. Ecker, G. Honecker and W. Staessens, D6-brane model building on ℤ 2 ×  6 : MSSM-like and left-right symmetric models, Nucl. Phys. B 901 (2015) 139 [arXiv:1509.00048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    G. Honecker, From stringy particle physics to moduli stabilisation and cosmology, Fortschr. Phys. 64 (2016) 380 [arXiv:1510.08443] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    M. Blaszczyk, G. Honecker and I. Koltermann, Circling the square: deforming fractional D-branes in type-II/Ωℛ orientifolds, JHEP 07 (2014) 124 [arXiv:1403.2394] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Blaszczyk, G. Honecker and I. Koltermann, Deformations on tilted tori and moduli stabilisation at the orbifold point, JHEP 11 (2015) 019 [arXiv:1507.07568] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    I. Koltermann, M. Blaszczyk and G. Honecker, Deforming D-brane models on T 6/( 2 ×  2M) orbifolds, Fortschr. Phys. 64 (2016) 412 [arXiv:1511.03549] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    P. Koerber, Lectures on generalized complex geometry for physicists, Fortschr. Phys. 59 (2011) 169 [arXiv:1006.1536] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    M. Larfors, Generalised geometry and flux vacua, Fortschr. Phys. 64 (2016) 354 [arXiv:1511.04595] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    M. Ihl and T. Wrase, Towards a realistic type IIA T 6/ 4 orientifold model with background fluxes. Part 1. Moduli stabilization, JHEP 07 (2006) 027 [hep-th/0604087] [INSPIRE].
  58. [58]
    M. Ihl, D. Robbins and T. Wrase, Toroidal orientifolds in IIA with general NS-NS fluxes, JHEP 08 (2007) 043 [arXiv:0705.3410] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    D. Bailin and A. Love, Stabilising the supersymmetric standard model on the ℤ 6' orientifold, Nucl. Phys. B 854 (2012) 700 [arXiv:1104.3522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    F. Marchesano, D6-branes and torsion, JHEP 05 (2006) 019 [hep-th/0603210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    R. Blumenhagen, J.P. Conlon and K. Suruliz, Type IIA orientifolds on general supersymmetric ℤ N orbifolds, JHEP 07 (2004) 022 [hep-th/0404254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    T. Kimura, M. Ohta and K.-J. Takahashi, Type IIA orientifolds and orbifolds on non-factorizable tori, Nucl. Phys. B 798 (2008) 89 [arXiv:0712.2281] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    S. Förste, C. Timirgaziu and I. Zavala, Orientifold’s landscape: non-factorisable six-tori, JHEP 10 (2007) 025 [arXiv:0707.0747] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  66. [66]
    S. Förste and I. Zavala, Oddness from rigidness, JHEP 07 (2008) 086 [arXiv:0806.2328] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  67. [67]
    S. Förste and C. Liyanage, Yukawa couplings for intersecting D-branes on non-factorisable tori, JHEP 03 (2015) 110 [arXiv:1412.3645] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  68. [68]
    A. Seifert and G. Honecker, Model building on the non-factorisable type IIA T 6/( 4 × Ωℛ) orientifold, Fortschr. Phys. 64 (2016) 416 [arXiv:1511.03075] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Chiral supersymmetric standard model spectra from orientifolds of Gepner models, Phys. Lett. B 609 (2005) 408 [hep-th/0403196] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model spectra from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds, hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83 [hep-th/0605226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    P. Anastasopoulos, G.K. Leontaris, R. Richter and A.N. Schellekens, SU(5) D-brane realizations, Yukawa couplings and proton stability, JHEP 12 (2010) 011 [arXiv:1010.5188] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  73. [73]
    D. Lüst and S. Stieberger, Gauge threshold corrections in intersecting brane world models, Fortschr. Phys. 55 (2007) 427 [hep-th/0302221] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    S.A. Abel and A.W. Owen, Interactions in intersecting brane models, Nucl. Phys. B 663 (2003) 197 [hep-th/0303124] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    M. Cvetič and I. Papadimitriou, Conformal field theory couplings for intersecting D-branes on orientifolds, Phys. Rev. D 68 (2003) 046001 [Erratum ibid. D 70 (2004) 029903] [hep-th/0303083] [INSPIRE].
  76. [76]
    S.A. Abel and A.W. Owen, N point amplitudes in intersecting brane models, Nucl. Phys. B 682 (2004) 183 [hep-th/0310257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    N. Akerblom, R. Blumenhagen, D. Lüst and M. Schmidt-Sommerfeld, Instantons and holomorphic couplings in intersecting D-brane models, JHEP 08 (2007) 044 [arXiv:0705.2366] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    R. Blumenhagen and M. Schmidt-Sommerfeld, Gauge thresholds and Kähler metrics for rigid intersecting D-brane models, JHEP 12 (2007) 072 [arXiv:0711.0866] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  80. [80]
    G. Honecker, Kähler metrics and gauge kinetic functions for intersecting D6-branes on toroidal orbifolds — the complete perturbative story, Fortschr. Phys. 60 (2012) 243 [arXiv:1109.3192] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    G. Honecker, Towards exact field theory results for the standard model on fractional D6-branes, PoS (EPS-HEP2011) 129 [arXiv:1109.6533] [INSPIRE].
  82. [82]
    M. Berg, M. Haack and J.U. Kang, One-loop Kähler metric of D-branes at angles, JHEP 11 (2012) 091 [arXiv:1112.5156] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    G. Honecker and W. Staessens, To tilt or not to tilt: discrete gauge symmetries in global intersecting D-brane models, JHEP 10 (2013) 146 [arXiv:1303.4415] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D. Lüst, S. Reffert, E. Scheidegger and S. Stieberger, Resolved toroidal orbifolds and their orientifolds, Adv. Theor. Math. Phys. 12 (2008) 67 [hep-th/0609014] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    M. Spalinski, Duality transformations in twisted Narain compactifications, Nucl. Phys. B 377 (1992) 339 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    R. Blumenhagen, V. Braun, B. Körs and D. Lüst, Orientifolds of K3 and Calabi-Yau manifolds with intersecting D-branes, JHEP 07 (2002) 026 [hep-th/0206038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    M. Cvetič and I. Papadimitriou, More supersymmetric standard-like models from intersecting D6-branes on type IIA orientifolds, Phys. Rev. D 67 (2003) 126006 [hep-th/0303197] [INSPIRE].ADSGoogle Scholar
  88. [88]
    M. Cvetič, T. Li and T. Liu, Supersymmetric Pati-Salam models from intersecting D6-branes: a road to the standard model, Nucl. Phys. B 698 (2004) 163 [hep-th/0403061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    C.-M. Chen, T. Li and D.V. Nanopoulos, Type IIA Pati-Salam flux vacua, Nucl. Phys. B 740 (2006) 79 [hep-th/0601064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds (II), Nucl. Phys. B 274 (1986) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    R. Blumenhagen, L. Görlich and B. Körs, Supersymmetric orientifolds in 6D with D-branes at angles, Nucl. Phys. B 569 (2000) 209 [hep-th/9908130] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  93. [93]
    R. Blumenhagen, L. Görlich and B. Körs, Supersymmetric 4D orientifolds of type IIA with D6-branes at angles, JHEP 01 (2000) 040 [hep-th/9912204] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    S. Förste, G. Honecker and R. Schreyer, Supersymmetric ℤ N ×  M orientifolds in 4D with D-branes at angles, Nucl. Phys. B 593 (2001) 127 [hep-th/0008250] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    N. Akerblom, R. Blumenhagen, D. Lüst and M. Schmidt-Sommerfeld, Thresholds for intersecting D-branes revisited, Phys. Lett. B 652 (2007) 53 [arXiv:0705.2150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    M. Blaszczyk, S. Groot Nibbelink and F. Ruehle, Gauged linear σ-models for toroidal orbifold resolutions, JHEP 05 (2012) 053 [arXiv:1111.5852] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  98. [98]
    A.M. Uranga, D-brane probes, RR tadpole cancellation and k-theory charge, Nucl. Phys. B 598 (2001) 225 [hep-th/0011048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  99. [99]
    H.P. Nilles and P.K.S. Vaudrevange, Geography of fields in extra dimensions: string theory lessons for particle physics, Mod. Phys. Lett. A 30 (2015) 1530008 [arXiv:1403.1597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mikel Berasaluce-González
    • 1
    Email author
  • Gabriele Honecker
    • 1
  • Alexander Seifert
    • 1
  1. 1.PRISMA Cluster of Excelccclence & Institut für Physik (WA THEP)Johannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations