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1 Introduction

Ever since the finding in 1985 that string theory constitutes a framework for unifying

quantum field theory and gravity, which — when compactified on a Calabi-Yau-threefold

or some singular limit thereof such as a toroidal orbifold — leads to N = 1 supersymmetry

in four dimensions [1], the search for vacuum configurations with not only the Standard

Model spectrum but also its interactions has been intensively pursued. Starting from

sporadic models of the E8×E8 heterotic string such as [2, 3], by implementing systematic

computer searches, large classes of vacua with particle physics spectra on T 6/ZN and

T 6/ZN×ZM orbifolds [4–6] (see also [7] for the heterotic SO(32) string theory) and Calabi-

Yau manifolds [8–12] could be constructed.

With the identification of D-branes as dynamical objects in Type I and II string the-

ory [13] in 1995, model building also opened up in these theories, which are conjectured
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to be related by S-duality [14, 15] and M-/F-theory duality [16, 17] to the vacua of the

heterotic string. The virtue of D-brane model building lies in the fact that physical quan-

tities, like e.g. the number of particle generations, are expressed in terms of topology and

geometry of the compact space, which is particularly intuitive for the case of D6-branes

on three-cycles in Type IIA orientifold compactifications, see e.g. [18] for a broad recent

overview. This intuition, however, comes at the cost of the relatively little explored sym-

plectic structure of generic Calabi-Yau threefolds. Since supersymmetric — or mathemat-

ically expressed special Lagrangian (sLag) — three-cycles constitute a largely unexplored

area (except for [19, 20] and [21]), intersecting D6-brane models in Type IIA orientifolds

have focussed on tori and toroidal orbifolds, and more specifically on backgrounds which are

factorised into two-tori, T 6 = (T 2)3, see e.g. [22–24], and (T 2)3/Γ with Abelian point groups

Γ = ZN or ZN × ZM . In the latter case, models with all three-cycles inherited from the

underlying torus have been constructed for Γ = Z2×Z2 [25–30] and Z2×Z4 [31–33] without

discrete torsion, while fractional three-cycles consisting of components inherited from the

torus plus exceptional divisors at orbifold singularities have been employed for Γ = Z4 [34],

Z6 [33, 35–37], Z′6 [37–42] and Z12−II [43] with a single Z2 sector and Γ = Z2×Z2 [44, 45],

Z2 × Z′6 [45–47] and Z2 × Z6 [45, 48–50] with discrete torsion with two Z2 subgroups.

All of the above mentioned types of string vacua contain a plethora of scalar fields

with flat directions. While the above models with a Z2 × Z2 subsymmetry allow for rigid

fractional three-cycles which, in the open string spectrum, provide gauge groups without

brane recombination/splitting moduli in the adjoint representation, it has recently been

noticed that (most) twisted complex structure moduli associated to deformations of singu-

larities are in fact stabilised by the existence of D-branes with U(1) symmetries [50–53]. To

further stabilise the dilaton and untwisted complex structure moduli, one usually argues

that closed string background NS-NS fluxes (see [54–56] for reviews) provide a non-trivial

scalar potential, see also [57, 58] for attempts to incorporate NS-NS fluxes on the factoris-

able T 6/Z4 orbifold and [59] for the factorisable T 6/Z′6 orbifold. However, incorporating a

non-trivial NS-NS flux H3 will in general violate the factorisation into two-tori and instead

lead to so-called non-factorisable torus backgrounds [60–62].

Orbifolds of non-factorisable tori have, to our best knowledge, scarcely been considered

in the literature. Within Type IIA orientifolds, one of the first studies of non-factorisable

ZN orbifolds can be found in [63], where special configurations of D6-branes on top of

the O6-planes lead to a local cancellation of the RR tadpoles within the compact space.

In [64] a similar analysis for ZN × ZM orbifolds was performed. In [65, 66] orientifolds of

T 6/(Z2 × Z2) with (non-)factorisable lattices were considered, including D6-branes which

are not parallel to the O6-planes, and in [43], three-cycles on the D4×A2 and D4×A1×A1

lattices with Z12−I and Z12−II orbifold symmetry, respectively, were studied. Finally, in [67]

the Yukawa couplings for a torus generated by a D6 lattice were computed. Here, we will

for the first time perform a thorough study of all possible sLag three-cycles on the two

different non-factorisable lattice backgrounds A3 × A3 and A3 × A1 × B2 of T 6/Z4, for

which we briefly provided some preliminary results in [68].

Besides from being able to classify sLag cycles on toroidal orbifolds, these geometri-

cally simple backgrounds are equipped with the non-negligible power of allowing for an
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explicit string quantisation and thus Conformal Field Theory (CFT) techniques, which do

not only reproduce the RR tadpole cancellation conditions and chiral spectrum, but are

indispensable for distinguishing gauge group enhancements U(N) ↪→ SO(2N) or USp(2N)

for D-branes wrapped on orientifold invariant three-cycles and for deriving the low-energy

effective action (for particle physics models based on powerful RCFT techniques see e.g.

also [69–72]). So far, CFT results within the geometrically intuitive approach to Type II

string model building with D-branes have been obtained only for gauge couplings at one-

loop and n-point couplings at tree-level using bulk cycles on the factorisable six-torus

(T 2)3 [73–78]. For fractional cycles on (T 2)3/ZN and ZN × ZM orbifolds [37, 79–81], the

one-loop corrections to gauge couplings and the Kähler potential at leading order could

be derived, while the one-loop corrections to the open string Kähler potential are only

known for bulk cycles on such orbifolds [82], see also [45, 46, 48, 83] for the distinction of

U(N) ↪→ SO(2N) versus USp(2N) gauge group enhancement using one-loop gauge thresh-

old computations. The aim of the present work is not only to generalise the geometric

methods of deriving the chiral spectrum from topological intersection numbers, but also

to initiate the generalisation of CFT techniques to so-called non-factorisable lattice back-

grounds.

The outline of this article is as follows: in section 2 we first study the geometry

of T 6/Z4 on non-factorisable tori, then implement anti-holomorphic involutions on the

lattices to study orientifolds of Type IIA string theory in section 3, after which we proceed

to discuss first hints on physical equivalences among different choices, and finally we study

supersymmetric D6-branes wrapped on (fractional) three-cycles. In section 4, we argue that

any supersymmetric fractional three-cycle on T 6/Z4 can be written in a factorised form,

which paves the way for implementing CFT methods in order to distinguish gauge group

enhancements U(N) ↪→ SO(2N) versus USp(2N) and to derive the vector-like matter

spectrum. We then proceed to provide some explicit Pati-Salam models with two and

four particle generations in section 5. Section 6 contains our conclusions and outlook,

and appendix A contains some further explicit examples of globally consistent D6-brane

configurations with chiral matter on the A3 ×A1 ×B2 lattice.

2 Non-factorisable T 6/Z4 orbifold geometries

In this section, we discuss the three-cycle geometry on the two non-factorisable background

lattices, A3×A3 and A3×A1×B2, of T 6/Z4. The Z4-action is usually encoded in the shift

vector ~ζ = 1
4(1,−2, 1) if the six-torus is parameterized by three complex coordinates, and

more generally the Z4-action is generated by the Coxeter element Q which acts on the root

lattice of the corresponding orbifold spanned by the simple roots {ei}i=1,...,6. Furthermore,

we denote the six toroidal one-cycles along the directions {ei} by πi and toroidal two- and

three-cycles by πij := πi ∧ πj and πijk := πi ∧ πj ∧ πk, respectively. The Hodge numbers of

all three possible lattice backgrounds — one factorisable and two non-factorisable ones —

are summarized in table 1 (cf. e.g. [84]). We are in particular interested in characterization

of the three-homology H3(T 6/Z4, Z) of each background lattice. This homology class

contains in general the Z4-invariant bulk πbulk and exceptional three-cycles πexc as well as
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Hodge numbers of T 6/Z4 orbifolds

Lattice hbulk11 hZ2
11 hZ4

11 hbulk21 hZ2
21 hZ4

21

B2 × (A1)2 ×B2 5 10 16 1 6 0

A3 ×A3 5 4 16 1 0 0

A3 ×A1 ×B2 5 6 16 1 2 0

Table 1. Summary of the Hodge numbers per untwisted and twisted sector of the T 6/Z4 orbifolds

on factorisable and non-factorisable tori.

fractional linear combinations thereof, the so-called fractional three-cycles πfrac. The bulk

three-cycles are inherited from the underlying torus and can be computed by taking the

Z4-orbits thereof:

πbulk :=

i=3∑
i=0

Qiπtorus. (2.1)

The exceptional three-cycles arise for the T 6/Z4 orbifolds only in the Z2-twisted sector.

They stem from the resolution of the Z2-invariant two-tori and can be written as a product

of an exceptional two-cycle eαβ (with αβ labelling the location of the cycle) and a Z2-

invariant toroidal one-cycle (plus some Z4-image). Finally, fractional three-cycles are either

one-half of a bulk cycle or linear combinations of one-half of some bulk and exceptional

three-cycles with the combinatorics depending on the corresponding singularities traversed

by the bulk cycles as well as sign factors associated to the choice of some discrete Wilson

line, or geometrically speaking the orientation the corresponding exceptional three-cycle is

wrapped.

Based on the discussion in this section, we will proceed to discuss (supersymmetric)

Type IIA orientifolds with O6-planes and D6-branes and the associated anti-holomorphic

involution on the background geometry in section 3.

2.1 B2 × (A1)
2 ×B2

Before investigating the three-cycle geometry of the non-factorisable lattices, we briefly

review three-cycles on the factorisable background on the group lattice B2× (A1)2×B2 as

first discussed in [34], see e.g. also the appendix of [45] for the Hodge numbers per twist

sector displayed in table 1. Although the B2-torus is a square-torus, we take the positive

simple roots of the B2-Lie algebra as basis of the torus lattice (see figure 1). The Z4-action

is then generated by the Coxeter element Q:

Q :=

(
1 −1

2 −1

)
⊕
(
−1 0

0 −1

)
⊕
(

1 −1

2 −1

)
, (2.2)
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π1
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bc
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bc
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43

π3

π4

π3

π4
π5

π6

1̄ 2̄

4̄3̄
Q

Q Q

Q

Q Q

B

2

B

2

(A

1

)

2

a-type

b-type

Figure 1. T 6/Z4-orbifold on the B2 × (A1)2 × B2-lattice and the Z2-invariant points (in red) on

T 2
(1) × T 2

(3) with both possible shapes a and b displayed for the (A1)2 torus.

acting on three two-tori T 2
(i). A basis of bulk three-cycles on the factorisable lattice is

given by

γ1 :=

3∑
k=0

Qk(π235 + π236) = 2 (π136 + π235 + 2π236) ,

γ2 := −
3∑

k=0

Qkπ236 = 2 (π135 + π136 + π235) ,

γ̄1 :=
3∑

k=0

Qk(π245 + π246) = 2 (π146 + π245 + 2π246) ,

γ̄2 := −
3∑

k=0

Qkπ246 = 2 (π145 + π146 + π245) .

(2.3)

An arbitrary bulk three-cycle can be represented by the (pairwise co-prime) toroidal wrap-

ping numbers (ni,mi)i=1,2,3,

πbulk =
3∑

k=0

Qk
( 3∧
i=1

(niπ2i−1 +miπ2i)

)
= An2 γ1 +Am2 γ̄1 +Bn2 γ2 +Bm2 γ̄2 ,

(2.4)

where on the second line the Z4 invariant bulk wrapping numbers with

A := n1m3 +m1n3 − 2n1n3, B := n1m3 +m1n3 −m1m3, (2.5)

have been used. The basic non-vanishing bulk intersection numbers are computed from

πbulk
a ◦ πbulk

b ≡ 1

4

( 3∑
i=0

Qiπtorus
a

)
◦
( 3∑
i=0

Qiπtorus
b

)
= πtorus

a ◦
( 3∑
i=0

Qiπtorus
b

)
(2.6)

and read

γi ◦ γ̄j = 2 δij . (2.7)
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π1

π3

π2

π4

π6

π5

A3 A3

Q

Q

Q

Q

Figure 2. T 6/Z4-orbifold on the A3 ×A3-lattice and its Z2-fixed lines (in red).

The bulk three-cycles thus do not form an unimodular basis. In addition to the bulk

three-cycles, there exist twelve exceptional cycles with basis

εi = (eαβ − eQ(α)Q(β)) ∧ π3 , ε̄i = (eαβ − eQ(α)Q(β)) ∧ π4 (2.8)

(where α and β denote the Z2-invariant points on the four-torus T 2
(1) × T 2

(3) and Q(α) and

Q(β) their Z4 images), and with non-vanishing intersection numbers

εi ◦ ε̄j = −2 δij . (2.9)

Fractional three-cycles of the form

πfrac =
1

2

(
πbulk + (−1)τ

Z2
∑

fixed set of i

[
± (n2εi +m2ε̄i)

])
, (2.10)

with the Z2 eigenvalue (−1)τ
Z2 parametrised by τZ2 ∈ {0, 1} and the sum over four i such

that the product of the signs ± gives +1, then generate the unimodular sixteen dimensional

basis of three-cycles.

2.2 A3 ×A3

We start the discussion of non-factorisable Z4-orbifolds with the lattice of the type A3×A3

(see figure 2). The Z4 group acts by the Coxeter element Q on the vectors {ei}i=1,...,6,

which span the six-torus:

Qe1 = e2 , Qe2 = e3 , Qe3 = −e1 − e2 − e3 ,

Qe4 = e5 , Qe5 = e6 , Qe6 = −e4 − e5 − e6 ,
(2.11)

which can be written in the matrix form

Q :=



0 0 −1 0 0 0

1 0 −1 0 0 0

0 1 −1 0 0 0

0 0 0 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


. (2.12)
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This action forms a discrete subgroup of SU(3) and thus preserves N = 2 supersymmetry

in four dimensions when compactifying Type II string theory. The Hodge numbers of this

orbifold are (see e.g. [84]) h21 = huntw
21 +hZ2

21 = 1+0 and h11 = huntw
11 +hZ4

11 +hZ2
11 = 5+16+4 as

displayed in the middle row in table 1. Due to hZ2
21 = 0, the three-homology of this orbifold

contains only (fractions of) bulk three-cycles and is four-dimensional.

For the Q-action to be an isometry of the lattice, one has to require the invariance of

the scalar product QtgQ = g [85], which restricts the shape of the metric of the six-torus to

g =



R2
1 aR2

1 −(2a+ 1)R2
1 eR1R2 sR1R2 cR1R2

aR2
1 R2

1 aR2
1 dR1R2 eR1R2 sR1R2

−(2a+ 1)R2
1 aR2

1 R2
1 cR1R2 dR1R2 eR1R2

eR1R2 dR1R2 cR1R2 R2
2 bR2

2 −(2b+ 1)R2
2

sR1R2 eR1R2 dR1R2 bR2
2 R2

2 bR2
2

cR1R2 sR1R2 eR1R2 −(2b+ 1)R2
2 bR2

2 R2
2


(2.13)

with s := −(c+ d+ e). The moduli R1 and R2 describe the radii of A3×A3 whereas a (b)

specifies the cosine of the angle between the vectors e1 and e2 (e4 and e5) and c, d and e

specify the cosines of the angles between e4 and the vectors e3, e2 and e1, respectively.

To describe the three-cycles on the six-torus T 6 we use the usual notation πikl =

πi ∧ πk ∧ πl. Due to the action of Q, it suffices to consider the three-cycles which wrap a

two-cycle on one A3-torus and a one-cycle on the other one. Such cycles can a priori be

described by twelve wrapping numbers (mi, ni, pi, qi, ri, si)i=1,2:

πtorus := (m1π1+n1π2+p1π3)∧(m2π1+n2π2+p2π3+q2π4+r2π5+s2π6)∧(q1π4+r1π5+s1π6) .

(2.14)

By taking orbits of the Q-action, the basis of Z4-invariant three-cycles is given by

γ1 :=
3∑
i=0

Qiπ124 = −π125 − π126 − π134 − π135 + π235 + π236 ,

γ2 :=

3∑
i=0

Qiπ125 = π124 + π125 − π135 − π136 − π234 − π235 ,

γ̄1 :=

3∑
i=0

Qiπ145 = −π146 − π245 − π246 + π256 − π345 + π356 ,

γ̄2 :=
3∑
i=0

Qiπ245 = π145 − π156 + π245 − π246 − π256 − π346 .

(2.15)

Using the ansatz (2.14) for a toroidal three-cycle, we can compute the corresponding bulk

cycle with the orbifold map
∑3

i=0Q
i and decompose it in the basis (2.15):

πbulk =
(
A1(q1 − s1)−A2(q1 + r1 − s1) +A3r

1
)
γ1

+
(
A1r

1 +A2(q1 − r1 − s1)−A3(q1 − s1)
)
γ2

+
(
B1(m1 − p1)−B2(m1 + n1 − p1) +B3n

1
)
γ̄1

+
(
B1n

1 +B2(m1 − n1 − p1)−B3(m1 − p1)
)
γ̄2

(2.16)
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with

A1 := m1n2 − n1m2, A2 := m1p2 − p1m2, A3 := n1p2 − p1n2,

B1 := q2r1 − r2q1, B2 := q2s1 − s2q1, B3 := r2s1 − s2r1.

It is easy to verify that the non-vanishing intersection numbers between the basis ele-

ments (2.15) are given by

γi ◦ γ̄j = −δij , (2.17)

where we used analogously to the factorised lattice background in section 2.1 that we can

define the intersection number between two toroidal three-cycles πtorus
a and πtorus

b on T 6 as

πtorus
a ◦ πtorus

b = πtorus
a ∧ πtorus

b /Vol(T 6) to arrive at the intersection number between two

Z4-invariant bulk three-cycles

πa ◦ πb =
1

4

( 3∑
i=0

Qiπtorus
a

)
◦
( 3∑
i=0

Qiπtorus
b

)
. (2.18)

Therefore, {γ1, γ2, γ̄1, γ̄2} already builds the unimodular basis.

Despite this and the fact that this orbifold does not have any exceptional three-cycles,

in order to compare with the other non-factorisable lattice in section 2.3 below, we can

consider the special class of three-cycles, for which the toroidal building blocks are Z2-

invariant, i.e. fractional three-cycles1

πfrac =
1

2
πbulk. (2.19)

Using the Q-transformation of the wrapping numbers(
mi , ni , pi

qi , ri , si

)i=1,2
Q−→

(
−pi , mi − pi , ni − pi
−si , qi − si , ri − si

)i=1,2

, (2.20)

we obtain the following condition. Any toroidal three-cycle πtorus of the form (2.14) is

Z2-invariant if and only if

r1(A1+A3) = 0 , n1(B1+B3) = 0 ,

(s1−r1)A3 = q1A1 , (p1−n1)B3 = m1B1 ,

(A1+A3)(s1−q1) = 0 , (B1+B3)(m1−p1) = 0 ,

(A1+A3)s1 = (q1−r1+s1)A2 , (B1+B3)p1 = (m1−n1+p1)B2 .

(2.21)

Among this special class of three-cycles from Z2-invariant toroidal cycles, there are

also those that satisfy Qπtorus = −πtorus. They do not contribute to the bulk cycles, or in

1This construction will be used in the next sections. We will see that if both A3-tori are orthogonal to

each other, any fractional three-cycle is Lagrangian.

Note also that for T 6/(Z2×Z2) without discrete torsion, the unimodular basis is constructed analogously

using Z2 × Z2-invariant three-cycles πtorus = 1
4
πbulk, cf. e.g. [86]. However, since Q as defined in (2.12)

permutes toroidal one-cycles on T 6/Z4 non-trivially, here we have to restrict to a special subclass of all a

priori allowed bulk three-cycles.
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other words are trivial in the H3(T 6/Z4,Z) homology. Taking into account this fact, we

can reduce the conditions (2.21) to

A1 +A3 = 0 , B1 +B3 = 0 ,

(q1 − r1 + s1)Ai = 0 , (m1 − n1 + p1)Bi = 0 for all i .
(2.22)

Note that due to the above Z2-invariance constraints on the wrapping numbers, the

basis of these fractional three-cycles coincides with the basis {γ1, γ2, γ̄1, γ̄2}.
Let us for example consider the toroidal three-cycle π = (π1 +π2)∧(π1 +π3)∧(π4−π6).

Obviously, it is Z2-invariant and gives rise to the fractional three-cycle πfrac = π + Qπ =

−2γ1 on T 6/Z4. Although the original cycle has coprime wrapping numbers and no other

toroidal three-cycle π′ exists such that π = 2π′, the corresponding bulk cycle −2γ1 is

non-coprime. This will play a role for computing the gauge group in the section 3.4.

2.3 A3 ×A1 ×B2

Now we consider three-cycles on T 6/Z4 with the lattice of type A3×A1×B2. The Z4-action

is generated by the Coxeter element which acts on the root lattice spanned by the simple

roots {ei}i=1,...,6 in the following way

Qe1 = e2 , Qe2 = e3 , Qe3 = −e1 − e2 − e3 ,

Qe4 = −e4 , Qe5 = e5 + 2e6 , Qe6 = −e5 − e6 ,
(2.23)

which can be cast in the matrix form

Q :=



0 0 −1 0 0 0

1 0 −1 0 0 0

0 1 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 −1

0 0 0 0 2 −1


. (2.24)

Again, this action corresponds to a discrete subgroup of SU(3), and thus preserves N = 2

supersymmetry in four dimensions when considering Type II string theory compactifi-

cations. The Hodge numbers of this orbifold are [84] h21 = huntw
21 + hZ2

21 = 1 + 2 and

h11 = huntw
11 + hZ4

11 + hZ2
11 = 5 + 16 + 6 (see table 1). Thus, we expect four bulk and four

exceptional three-cycles on this orbifold.

From solving the equation QtgQ = g we obtain

g := ei · ej =



R2
3 aR2

3 −(1 + 2a)R2
3 dR3R1 bR3R2 cR3R2

aR2
3 R2

3 aR2
3 −dR3R1 −(b+ 2c)R3R2 (b+ c)R3R2

−(1 + 2a)R2
3 aR2

3 R2
3 dR3R1 −bR3R2 −cR3R2

dR3R1 −dR3R1 dR3R1 R2
1 0 0

bR3R2 −(b+ 2c)R3R2 −bR3R2 0 2R2
2 −R2

2

cR3R2 (b+ c)R3R2 −cR3R2 0 −R2
2 R2

2


.

(2.25)

The real positive moduli R3, R1 and R2 describe the radii of A3 × A1 × B2, respectively,

and a, b, c and d specify the cosines of angles between the vectors of the lattice. More

precisely, a is the cosine of the angle between the vectors e1 and e2, d the cosine of the

angle between e1 and e4, b (c) is the cosine of the angle between e1 and e5 (e6).
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Bulk three-cycles. We make the ansatz that any toroidal three-cycle is factorisable in

the sense that it can be characterised a priori by ten wrapping numbers (m1, n1, p1, q1)×
(m2, n2, p2, q2)× (m3, n3) and written as

πtorus :=

2∧
i=1

(miπ1 + niπ2 + piπ3 + qiπ4) ∧ (m3π5 + n3π6) . (2.26)

The last doublet (m3, n3) gives us the one-cycle on the B2-torus. The two quadruplets

(mi, ni, pi, qi) parametrise the two-cycle on A3×A1. It is easy to see that the representation

of three-cycles by this ansatz is not unique, i.e. the same three-cycle can be described by

different wrapping numbers, e.g. when permuting the indices i = 1 and 2.

By taking orbits of the Q-action, we can define a basis of the Z4-invariant bulk three-

cycles

γ1 := −
3∑
i=0

Qiπ136 = 2(π125 + π126 − π136 − π235 − π236) ,

γ2 := −
3∑
i=0

Qiπ125 = 2(π126 + π135 + π136 − π236) ,

γ̄1 :=

3∑
i=0

Qiπ146 = π145 + 2π146 + 2π245 + 2π246 + π345 ,

γ̄2 :=

3∑
i=0

Qiπ246 = −π145 + 2π246 + π345 + 2π346 .

(2.27)

Note that here the linear combinations 1
2(γ1±γ2) are also bulk cycles. The decomposition in

the basis {γ1,2, γ̄1,2} of any bulk three-cycle inherited from a toroidal one of the type (2.26)

is given by

πbulk = Pγ1 +Qγ2 + P̄ γ̄1 + Q̄γ̄2

=

[
(A2 −A3)m3 +

1

2
(A1 − 2A2 +A3)n3

]
γ1 +

[
(A2 −A1)m3 +

1

2
(A1 −A3)n3

]
γ2

+
[
(−B1 +B2 +B3)m3 + (B1 −B3)n3

]
γ̄1 +

[
(−B1 −B2 +B3)m3 +B2n

3
]
γ̄2 ,

(2.28)

with
A1 := m1n2 − n1m2, B1 := m1q2 − q1m2,

A2 := m1p2 − p1m2, B2 := n1q2 − q1n2,

A3 := n1p2 − p1n2, B3 := p1q2 − q1p2.

(2.29)

Using the formula for bulk intersection numbers (2.18), we obtain for the bulk basis of (2.27)

γi ◦ γ̄j = −2δij , γi ◦ γj = γ̄i ◦ γ̄j = 0 , (2.30)

which shows that the integral basis of bulk three-cycles is not unimodular.
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π5

π6

π1

π3

π2

π4

bc bc

bc

1

2

1̄ 2̄

4̄3̄

A3 × A1 B2

Q

Q Q

Q

Q

Figure 3. T 6/Z4-orbifold on the A3 ×A1 ×B2-lattice and its Z2-fixed lines (in red).

Exceptional three-cycles. Besides the four bulk three-cycles γi, γ̄i (with i = 1, 2), there

are also four exceptional three-cycles appearing in the Z2 twisted sector of the orbifold.

It is easy to see that Q2 acts trivially on the sub-manifold (π1 + π3) ∧ π4. One can show

that there are eight such Q2-invariant sub-manifolds, which are indicated in red in figure 3.

We numerate them by ij̄ where the first index denotes the Z2-invariant two-tori (1, 2) on

the A3 ×A1-torus and the second one the Z2-invariant points (1̄, 2̄, 3̄, 4̄) on the B2-torus.

These Q2-invariant sub-manifolds can be arranged in six congruence classes (under the

Q-action): {11̄}, {12̄}, {13̄, 14̄}, {21̄}, {22̄}, {23̄, 24̄}.
The resolution of these six Z2-singular sub-manifolds gives rise to six four-dimensional

sub-manifolds with the topology S2×T 2 in accordance with hZ2
22

Poincaré
= hZ2

11 = 6 in table 1,

where the exceptional two-cycle eij̄ describes the S2-part, and the two one-cycles π1 + π3

and π4 span a two-torus. The index of eij̄ is inherited from the numeration of the Z2-

invariant two-tori. Finally by splitting T 2 into one-cycles π1 + π3 and π4, we construct

Q-invariant exceptional three-cycles. Due to the anti-symmetric action of Q on the one-

cycles, only the exceptional two-cycles e13̄, e14̄, e23̄, e24̄ provide non-trivial results in the

construction. Thus, the exceptional three-cycles are:

γ3 := (e13̄ − e14̄) ∧ (π1 + π3) , γ̄3 := (e13̄ − e14̄) ∧ π4 ,

γ4 := (e23̄ − e24̄) ∧ (π1 + π3) , γ̄4 := (e23̄ − e24̄) ∧ π4 ,
(2.31)

with the intersection numbers

γi ◦ γ̄j = 2δij , γi ◦ γj = γ̄i ◦ γ̄j = 0 i = 3, 4 . (2.32)

Since the intersection form of the γi’s, and γ̄i’s (i = 1, 2, 3, 4) is not unimodular, these

three-cycles do not form the minimal integral basis. We thus have to consider fractional

three-cycles, which can consist of half a bulk cycle and simultaneously of half an exceptional

cycle.

Fractional three-cycles and their integral basis. In order to write down an inte-

gral basis for the three-cycles such that the intersection form is unimodular, we start by

specifying the construction of fractional cycles, which are Z2-invariant, analogously to the

– 11 –
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factorisable case reviewed in section 2.1. The fractional cycles can wrap half a bulk cycle

and half an exceptional one

πfrac =
1

2
πbulk +

1

2
πexc.

Motivated by the factorisable orbifold, we apply the well-known techniques of construction

of the fractional cycles to our case. The non-factorisable structure of the lattice gives rise

to some differences and therefore some modification of these techniques is needed.

In the case of the factorisable torus T 2
1 ×T 2

2 ×T 2
3 , every Z2-invariant three-cycle passes

through two Z2-invariant points per T 2 (here T 2
1 × T 2

3 ) and contains a Z2-invariant one-

cycle on the remaining two-torus (here T 2
2 ). In the A3 × A3-case we saw that this does

not hold true and we had to generalise this condition to Q2πtorus = πtorus. The same

happens in the present case of the A3 × A1 × B2-lattice. Let us for example consider

the toroidal cycle (1, 0, 0, 0) × (0, 0, 0, 1) × (1, 0) ≡ π145 through the origin. Despite the

fact that this three-cycle contains the Z2-invariant one-cycle π4 and passes through a Z2-

invariant point, π145 is not Z2-invariant and therefore cannot be fractional. Indeed, one

can check that Q2π145 = −π345. To impose the additional constraint on the numbers

(mi, ni, pi, qi)i=1,2 × (m3, n3) ensuring the Q2-invariance of the toroidal three-cycle we use

the Q-action on the wrapping numbers(
mi, ni, pi, qi

m3, n3

)
Q−→

(
−pi, mi − pi, ni − pi, −qi

m3 − n3, 2m3 − n3

)
. (2.33)

For any toroidal three-cycle πtorus of the form (2.26), it can be shown that the following

statements are equivalent:

πtorus is Z2-invariant⇐⇒ Q2πtorus = πtorus ⇐⇒ A1 +A3 = 0 and B1 −B2 +B3 = 0 .

(2.34)

Only such Z2-invariant toroidal three-cycles can be used for the construction of the frac-

tional cycles. From the factorisable case we know that the toroidal three-cycles giving rise

to the fractional cycles have to contain Z2-invariant one-cycles. Indeed, it can be verified

that any cycle which satisfies the conditions (2.34) can be written as

(m1, n1, p1, q1)× (m2, n2, p2, q2)× (m3, n3) = (m1, n1, p1, 0)× (p̃2, 0, p̃2, q̃2)× (m3, n3) + R ,

(2.35)

where p̃2 := p2 − n2

n1 p
1 and q̃2 := q2 − n2

n1 q
1 for n1 6= 0.2 The remaining term

R := (0, 0, 0, q1)× (p̃2, 0, p̃2, q̃2)× (m3, n3)

does not contribute to the bulk three-cycle and can be neglected. Therefore, any Z2-

invariant three-cycle contains a linear combination of the Z2-invariant one-cycles π1 + π3

and π4.

The next step to construct the fractional cycles is to determine the exceptional part. In

the factorisable case we identify which Z2-invariant points the toroidal three-cycle passes

through. On the A3 × A1 × B2-orbifold also the Z2-invariant lines are involved and so

2 n1 = 0 gives rise to a similar result.
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we have to calculate their intersection with the toroidal three-cycle. Another important

difference is that for the factorisable lattice (T 2)3, the co-prime condition on the wrapping

numbers (ni,mi) per T 2
i is necessary and sufficient for the fractional cycle to have a co-

prime decomposition in the unimodular basis. On the contrary, in the non-factorisable case

the sufficiency condition gets lost and some further restrictions on the wrapping numbers

(mi, ni, pi, qi) are needed. It turns out that it is convenient to neglect these constraints at

first and better to select the co-prime cycles after they are expressed in the unimodular

basis. Thus, in this case, for the computation of the exceptional part we have to know not

just which Z2-invariant lines the toroidal three-cycle intersects but also how many times.

That requires some combinatorics.

Using the property (2.35) for the Z2-invariant three-cycles, we have only to compute

how many times the cycle with the wrapping numbers (m1, n1, p1, 0) intersects the one-cycle

π1 + π3. We find that the number N of intersection points is

N = g.c.d.(m1 − p1, n1) . (2.36)

Furthermore, we make the following considerations and set several notations:

• The three-cycle can pass through both fixed lines 1 and 2 on the A3-torus if and only

if m1−p1
N and n1

N are odd. We introduce three new parameters counting the different

fixed lines traversed by the three-cycle

τ :=

{
2 if m1−p1

N and n1

N are odd ,

1 otherwise
(2.37)

and

τ1, τ2 ∈ {0, 1} with τ1 + τ2 = τ . (2.38)

• On the B2-torus, a one-cycle with even wrapping number n3 passes through the fixed

points 1̄ and 2̄ (both Z4-invariant), or 3̄ and 4̄ (both Z2-invariant). In this case, the

fractional three-cycle contains either none or two exceptional three-cycles. If n3 is

odd, the one-cycle on B2 intersects one Z4- and one Z2-invariant fixed point, which

in any case gives rise to one corresponding exceptional cycle. Thus, we define the

parameter σ, which counts the number of exceptional three-cycles contributing to a

fractional cycle for given bulk part, by

σ :=

{
0, 2 if n3 is even ,

1 if n3 is odd .
(2.39)

• Furthermore, we introduce two parameters s1, s2 = ±1 which describe the winding

directions of the exceptional cycles.

Now we are able to write down the final form of the fractional three-cycle which is

stemmed from the Z2-invariant toroidal three-cycle with the wrapping numbers (m1, n1,

p1, 0)× (p̃2, 0, p̃2, q̃2)× (m3, n3). It has the following form:

πfrac =
1

2
πbulk +N

p̃2σ

2
(s1τ1γ3 + s2τ2γ4) +N

q̃2σ

2
(s1τ1γ̄3 + s2τ2γ̄4) . (2.40)
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It is easy to check that the coefficients of πbulk, stemming from the toroidal cycle with the

wrapping numbers (m1, n1, p1, 0)× (p̃2, 0, p̃2, q̃2)× (m3, n3), have N as defined in (2.36) as

a common divisor too. Naively one can expect the restriction to N = 1 for the co-prime

condition. However, this is not necessarily true. Let us for example consider the toroidal

cycle with wrapping numbers (1, 0,−1, 0) × (0, 0, 0, 1) × (0, 1) passing through the fixed

point 1. It gives rise to the fractional cycle 1
2(2γ̄1 ± 2γ̄3). Although N = 2 this cycle is

co-prime because the cycle 1
2(γ̄1 ± γ̄3) does not exist due to the condition (2.34).

As a consequence of the considerations above we can summarise:

• Any fractional cycle containing only the one-cycle factor π1 + π3 (q̃2 = 0) within the

exceptional part can be expressed as a sum over the unbarred cycles γi,

π := v1γ1 + v2γ2 + v3γ3 + v4γ4 , (2.41)

with an even number of the coefficients vi with half-integer values.

• Any fractional cycle containing only the one-cycle factor π4 (p̃2 = 0) within the

exceptional part can be expanded as a sum over the barred cycles γ̄i,

π̄ := v̄1γ̄1 + v̄2γ̄2 − v̄3γ̄3 − v̄4γ̄4 , (2.42)

where v̄i are either all half-integer or all integer.

In order to determine an integral symplectic basis for the three-cycles, we search for

pairs of cycles π and π̄ such that π ◦ π̄ = −2, with the coefficients vi and v̄i satisfying3

sgn vi = sgn v̄i for all i. All possible cycles can be combined in three sets:

1. (v1, v2, v3, v4) = (±1
2 ,±1

2 , 0, 0) and (v̄1, v̄2, v̄3, v̄4) = (±1,±1, 0, 0) where the underly-

ing denotes all permutations of entries.

2. (v1, v2, v3, v4) = (±1, 0, 0, 0) for the (un-)barred cycles.

3. (v1, v2, v3, v4) = (±1
2 ,±1

2 ,±1
2 ,±1

2) for the (un-)barred cycles.

Altogether there are 48 unbarred and 48 barred cycles. It is not difficult to specify a

basis of these cycles. For the unbarred part we obtain

α1 :=

(
0,

1

2
,−1

2
, 0

)
,

α2 :=

(
0, 0,

1

2
,−1

2

)
,

α3 := (0, 0, 0, 1) ,

α4 :=

(
1

2
,−1

2
,−1

2
,−1

2

)
,

(2.43)

3The signum function is given by

sgn(x) :=


−1 if x < 0 ,

0 if x = 0 ,

1 if x > 0 .
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and for the barred one,

ᾱ1 := (0, 1, 1, 0) ,

ᾱ2 := (0, 0,−1, 1) ,

ᾱ3 := (0, 0, 0,−1) ,

ᾱ4 :=

(
1

2
,−1

2
,

1

2
,

1

2

)
.

(2.44)

Therefore, the fractional cycles form the F4 ⊕F4-lattice, and the intersection matrix takes

the form

αi ◦ ᾱj =


−2 1 0 0

1 −2 2 0

0 1 −2 1

0 0 1 −2

 . (2.45)

This is the Cartan matrix for F4, and it is unimodular. Indeed, it is easy to verify that any

bulk, exceptional or fractional cycle can be expanded in the basis (2.43) and (2.44) with

integer coefficients. In other words, since the determinant of the intersection matrix (2.45)

is 1, the αi’s and ᾱi’s form an integral basis of the homology lattice H3(M,Z).

3 Intersecting brane worlds

The aim of this article is not only the study of non-factorisable Z4-orbifolds but also model

building with Z4-orientifolds of Type IIA superstring theory. We are interested in global

supersymmetric models with a semi-realistic chiral spectrum, in particular Pati-Salam-

models as D6-brane realisations with only three visible stacks, which have on other lattices

been the most simple kind of global GUT model to be found, see e.g. [31, 34, 40, 46, 48, 87–

89]. The introduction of an anti-holomorphic involution R on the Z4-orbifold gives rise

to orientifold six-planes (O6-planes), which wrap the fixed loci of RQk which together

form some element of H3(T 6/Z4,Z). In the following, we denote this homological cycle by

πO6. The (Z4-orbits of) O6-planes have negative RR charge, which has to be canceled by

introducing stacks of Na space-time filling D6-branes which wrap a three-cycle πa on the

orbifold. The RR tadpole cancellation condition is given by [86]∑
a

Na(πa + π′a)− 4πO6 = 0 , (3.1)

where π′a is the R-image of the three-cycle πa with in general π′a 6= πa. The resulting gauge

group is then generically
∏
a U(Na). The case π′a = πa gives rise to the rank-preserving

symmetry enhancement: U(Na) ↪→ USp(2Na) or SO(2Na). We call a model with the RR

tadpole condition (3.1) implemented global, otherwise local. The chiral massless spectrum

can be computed from topological intersection numbers [86]. For the gauge group
∏
a U(Na)

it is given in the table 2.

Furthermore, the (Z4-orbits of the) O6-planes preserve N = 1. For semi-realistic

models to be supersymmetric, we have to require that all D6-branes preserve the same
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Chiral spectrum

Representation Multiplicity

(Sym)a
1
2 (πa ◦ π′a − πa ◦ πO6)

(Anti)a
1
2 (πa ◦ π′a + πa ◦ πO6)

(Na, N̄b) πa ◦ πb
(Na, Nb) πa ◦ π′b

Table 2. Chiral spectrum for intersecting D6-branes with gauge group
∏
a U(Na).

supersymmetry, i.e., that they are wrapped on special Lagrangian three-cycles with the

same calibration as the O6-planes. These additional constraints on the wrapped three-

cycles will be considered in more details in the section 3.2.

3.1 Anti-holomorphic involutions R of T 6/Z4

Before we start with the construction of the (Z4-orbit of) O6-plane(s), we have to calculate

how the anti-holomorphic involution acts on the real lattice in each case. It is known [90, 91]

that there exist a set of complex coordinates {zi}i=1,2,3 on which the twist Q (2.23) acts

diagonally

Qtzi = e2πiζizi (3.2)

with the eigenvalues (i,−1, i) for the shift vector ~ζ = 1
4(1,−2, 1). In these coordinates, the

anti-holomorphic involution (including Z4-twists) is simply given by complex conjugation

R(Qt)n : zi → eiθni z̄i (3.3)

for some real parameter θni . We will now discuss the a priori different possible choices of

(θn1 , θn2 , θn3) for each Z4-invariant background lattice and argue that some of the different

choices lead to physically equivalent vacua, at least based on the allowed ranks of gauge

groups in the RR tadpole cancellation conditions as well as on the counting of supersym-

metric bulk cycles per given length.

3.1.1 B2 × (A1)
2 ×B2

In the factorisable case, there exist a priori two choices of orientifold axes per two-torus [92–

94] denoted by A (reflection along the short one-cycle, here π2/6 or some Z4-images thereof,

cf. figure 1) and B (reflection along the long one-cycle, here π1/5) for the B2-tori and two

lattice orientations a (rectangular lattice) and b (tilted lattice) for the (A1)2 torus. Due

to the permutation symmetry T 2
1 ↔ T 2

3 , here the combinatorics provides at most six

inequivalent choices of phases (3.3), denoted by AaA, AaB, BaB and AbA, AbB, BbB,

for which the O6-planes are displayed in table 3.

However, the massless closed string spectrum — encoded in the orientifold-even and

-odd Hodge numbers (h+
11, h

−
11, h21) counting vectors, Kähler and complex structure moduli

as derived for generic Calabi-Yau backgrounds in [95] —, which was derived using CFT

techniques in [34, 45] suggests that there are pairwise relations AaA↔ BaB and AbA↔

– 16 –



J
H
E
P
0
8
(
2
0
1
6
)
0
6
2

O6-planes on the B2 × (A1)2 ×B2 lattice

lattice Aa/bA Aa/bB Ba/bB

R 8(1−b)π236 4(1−b)π235 2(1−b)π135

RQ 2(π1+2π2)∧(π4−bπ3)∧(π5+2π6) 4(π1+2π2)∧(bπ3−π4)∧π6 8π2∧(π4−bπ3)∧π6

RQ2 −8(1−b)(π1+π2)∧π3∧(π5+π6) 4(1−b)(π1+π2)∧π3∧(π5+2π6) −2(1−b)(π1+2π2)∧π3∧(π5+2π6)

RQ3 2π1∧(bπ3−π4)∧π5 4π1∧(π4−bπ3)∧(π5+π6) 8(π1+π2)∧(bπ3−π4)∧(π5+π6)

Table 3. Fixed planes for the different lattice orientations of B2 × (A1)2 × B2, weighted with the

number NO6 = 2(1− b) of parallel O6-planes along T 2
2 with b = 0, 12 for a and b, respectively.

BbB, reducing the number of physically inequivalent backgrounds to four. This assumption

is supported by the analogy to the relations among different lattice backgrounds derived

for Z(′)
6 and Z2 × Z(′)

6 in [42, 46, 48].

Since D6-branes on the factorisable T 6/(Z4 × ΩR) orientifold have been considered

at length in [34] with the result that at most two generations of chiral particles can be

engineered by two supersymmetric intersecting D6-brane orbits, we will from now on con-

centrate on backgrounds with non-factorisable tori, where we will determine all a priori

different choices of lattice orientations and then search for physical equivalences.

3.1.2 A3 ×A3

The eigenvectors of Qt with Q defined in (2.12) give rise to the complex coordinates [84]

z1 :=
1√
2

(x1 + ix2 − x3) ,

z2 :=
1√
8u2

(
(x1 − x2 + x3 + U(x4 − x5 + x6)

)
,

z3 :=
1√
2

(x4 + ix5 − x6) ,

(3.4)

where the complex structure is U := u1 + iu2 = − R2
2aR1

(
c+ e+ i

√
−(c+ e)2 + 4ab

)
.

With the transformation from the complex coordinates to the real ones, we are able

to write down the action of R on the real lattice. There are a priori four possible choices

of angles in the anti-holomorphic involution:

~θ = (0, 0, 0)⇒


R1e1 = e1 , R1e2 = −e1 − e2 − e3 ,
R1e3 = e3 , R1e4 = u1(e1 + e3)− e6 ,
R1e5 = −u1(e1 + e3)− e5 , R1e6 = u1(e1 + e3)− e4 ,

 AAA (3.5)

~θ =

(
π

2
, 0, 0

)
⇒


R2e1 = e1 + e2 + e3 , R2e2 = −e3 ,
R2e3 = −e2 , R1e4 = u1(e1 + e3)− e6 ,
R1e5 = −u1(e1 + e3)− e5 , R1e6 = u1(e1 + e3)− e4 ,

 BAA (3.6)

~θ =

(
0, 0,

π

2

)
⇒


R3e1 = e1 , R3e2 = −e1 − e2 − e3 ,
R3e3 = e3 , R3e4 = u1(e1 + e3) + e5 ,

R3e5 = u1(e1 + e3) + e4 , R3e6 = u1(e1 + e3)− e4 − e5 − e6 ,

 AAB

(3.7)

– 17 –



J
H
E
P
0
8
(
2
0
1
6
)
0
6
2

O6-planes for AAA-lattice of A3 ×A3-orbifold

Projection Fixed point set

R1 2(π134 − π136)

R1Q 2(π245 + π246 − π256 + π345 + π346 − π356)

R1Q
2 2(π124 + 2π125 + π126 − π234 − 2π235 − π236)

R1Q
3 2(−π145 + π146 + π156 − π245 + π246 + π256)

Table 4. Toroidal cycles wrapped by the O6-planes on the AAA lattice orientation of A3 ×A3.

~θ =

(
π

2
, 0,

π

2

)
⇒


R4e1 = e1 + e2 + e3 , R4e2 = −e3 ,
R4e3 = −e2 , R4e4 = u1(e1 + e3) + e5 ,

R4e5 = u1(e1 + e3) + e4 , R4e6 = u1(e1 + e3)− e4 − e5 − e6 .

 BAB

(3.8)

Here we took the notation for the lattices from [63], which we will now explain. The

complex coordinates (3.4) parametrise the three-planes4 where Q acts as a rotation. A

means that, in their choice of basis, the orientifold plane lies along the horizontal axis in

the corresponding plane, while B corresponds to the angle of the orientifold plane with

respect to the horizontal axis being π/4.

Note also that in contrast to the B2×(A1)2×B2-orbifold, the BAA- and AAB-lattices

are really different geometrically and cannot be related by exchanging T 3
1 ↔ T 3

2 . This will

be further specified in the sections 3.3 and 4.

Since only a crystallographic action on the lattice is allowed (Rir = r+Λ for arbitrary

lattice vectors r ∈ Λ), the real part of the complex structure can take only the value u1 = 0

(⇒ c+e = 0 in (2.13) and only A as middle entry of the lattice orientation). The orientifold

projections act then on the homology classes of three-cycles (2.15) in the following way:

R1 : γ1 ↔ −γ2 , γ̄1 ↔ γ̄2 . (3.9)

R2/3 :

{
γ1 → γ1 , γ̄1 → −γ̄1 ,

γ2 → −γ2 , γ̄2 → γ̄2 .
(3.10)

R4 : γ1 ↔ γ2 , γ̄1 ↔ −γ̄2 . (3.11)

Furthermore, we calculate the fixed point set for the orientifold involutions {Ri , RiQ ,
RiQ2, RiQ3}. The results are listed in tables 4–7 for the respective Ri.

The fixed point set under RiQn is computed in the following way, e.g. for R1: first, we

calculate the three eigenvectors of R1 corresponding to the eigenvalue 1, in this case e1, e3

and e4−e6. The to these vectors corresponding one-cycles πi span a three-cycle π134−π136.

The next step is to determine how many three-cycles of the same homology class we have

which are point-wise R1-invariant. In the case at hand, we obtain two such submanifolds,

which go through the R1 fixed points (0, 0, 0, 0, m2 , 0) with m ∈ {0, 1}. The projection R1Q

leads to similar results. The fixed point sets of RQ2 and RQ3 can be calculated by acting

4These three-planes are closely related to the “factorisation” of the non-factorisable torus we will discuss

in the next section.
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O6-planes for BAA-lattice of A3 ×A3-orbifold

Projection Fixed point set

R2 2(−π124 + π126 + π134 − π136 + π234 − π236)

R2Q 2(−π145 − π146 + π156 + π345 + π346 − π356)

R2Q
2 2(π124 + 2π125 + π126 + π134 + 2π135 + π136 − π234 − 2π235 − π236)

R2Q
3 2(−π145 + π146 + π156 − 2π245 + 2π246 + 2π256 − π345 + π346 + π356)

Table 5. Toroidal cycles wrapped by the O6-planes for the BAA lattice orientation of A3 ×A3.

O6-planes for AAB-lattice of A3 ×A3-orbifold

Projection Fixed point set

R3 2(π134 + π135)

R3Q 2(π246 + π346)

R3Q
2 2(π125 + π126 − π235 − π236)

R3Q
3 2(−π145 + π156 − π245 + π256)

Table 6. Toroidal cycles wrapped by the O6-planes for the AAB lattice orientation of A3 ×A3.

O6-planes for BAB-lattice of A3 ×A3-orbifold

Projection Fixed point set

R4 2(−π124 − π125 + π134 + π135 + π234 + π235)

R4Q 2(π146 − π346)

R4Q
2 2(π125 + π126 + π135 + π136 − π235 − π236)

R4Q
3 2(π145 − π156 + 2π245 − 2π256 + π345 − π356)

Table 7. Toroidal cycles wrapped by the O6-planes for the BAB lattice orientation of A3 ×A3.

with Q on the R- and RQ-fixed point sets, respectively. After all fixed point sets have

been computed, from purely geometric considerations there still remains an ambiguity in

both the global sign of all sets and the relative sign between the R- and RQ-sets which

needs to be fixed, i.e., the three-cycle ±
(
Fix(R+RQ2)±Fix(RQ+RQ3)

)
is invariant for

any choice of the signs. Each of the two sets of fixed points corresponds to a different bulk

cycle. Asking both of them to have the same calibration will fix the relative sign between

them. The global sign is fixed once we choose one of the two possible calibration conditions

(either
∫

(eiϕΩ3) > 0 or
∫

(eiϕ+iπΩ3) > 0); alternatively, choosing the global sign will fix

the calibration condition that has to be used. This calibration will be explained in more

detail in section 3.2.
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Adding all contributions, we can express the corresponding O6-planes as elements of

H3(T 6/Z4,Z):

πO61 := 2(γ2 − γ1)− 2(γ̄1 + γ̄2) , (3.12a)

πO62 := −4γ1 − 4γ̄2 , (3.12b)

πO63 := −2γ1 − 2γ̄2 , (3.12c)

πO64 := 2(γ1 + γ2) + 2(γ̄2 − γ̄1) . (3.12d)

Obviously, the O6-planes (3.12) are invariant under the corresponding orientifold pro-

jections given in equations (3.9), (3.10) and (3.11).

3.1.3 A3 ×A1 ×B2

We can approach the A3 × A1 × B2-case in an analogous way. Due to (3.2), the complex

coordinates are:

z1 =
1√
2

(x1 + ix2 − x3) ,

z2 =
1

2
√

2 Im(U)
(x1 − x2 + x3 + 2Ux4) ,

z3 = x5 − x6

2
+ i

x6

2
,

(3.13)

with the complex structure

U := u1 + iu2 := − R1

2aR3

(
d+ i

√
−a− d2

)
. (3.14)

For this non-factorisable lattice, there are four possible orientations:

~θ = (0, 0, 0)⇒


R1e1 = e1 , R1e2 = −e1 − e2 − e3 ,
R1e3 = e3 , R1e4 = 2u1(e1 + e3)− e4 ,
R1e5 = e5 , R1e6 = −e5 − e6 ,

 AAB (3.15)

~θ =

(
0, 0,−π

2

)
⇒


R2e1 = e1 , R2e2 = −e1 − e2 − e3 ,
R2e3 = e3 , R2e4 = 2u1(e1 + e3)− e4 ,
R2e5 = −e5 − 2e6 , R2e6 = e6 ,

 AAA (3.16)

~θ =

(
− π

2
, 0,−π

2

)
⇒


R3e1 = −e2 , R3e2 = −e1 ,
R3e3 = e1 + e2 + e3 , R3e4 = 2u1(e1 + e3)− e4 ,
R3e5 = −e5 − 2e6 , R3e6 = e6 ,

 ABA (3.17)

and

~θ =

(
− π

2
, 0, 0

)
⇒


R4e1 = −e2 , R4e2 = −e1 ,
R4e3 = e1 + e2 + e3 , R4e4 = 2u1(e1 + e3)− e4 ,
R4e5 = e5 , R4e6 = −e5 − e6 .

 ABB (3.18)

Here we also took again the notation for the lattices from [63]. Since only the crystal-

lographic action on the lattice is allowed (Rir = r+ Λ for arbitrary lattice vectors r ∈ Λ),

the real part of the complex structure can take only two values u1 = 0, 1
2 . We adapt the

above lattice notation for different values of u1 in the following way: we write a small a
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O6-planes for AAB-lattice of A3 ×A1 ×B2-orbifold

Projection Fixed point set

R1 2π135

R1Q 4
(
u1(π126 + π136 − π236) + π246 + π346

)
R1Q

2 2π125 + 4π126 − 2π235 − 4π236

R1Q
3 4

(
u1(π135 + π136 − π125 − π126 + π235 + π236)− π145 − π146 − π245 − π246

)
Table 8. Toroidal cycles wrapped by the O6-planes for the AAB orientation of A3 ×A1 ×B2.

and b as a subscript after the first A for u1 = 0 and u1 = 1
2 , respectively. The b-type

lattice is to our best knowledge investigated here for the first time, while the D6-brane

configurations, which cancel the bulk RR tadpoles locally on top of the O6-planes, in [63]

correspond to the a-type choice u1 = 0.

The orientifold action on the homological three-cycles is given by

R1 :


γ1 → γ2 , γ̄1 → −γ̄2 − 2u1γ2 ,

γ2 → γ1 , γ̄2 → −γ̄1 − 2u1γ1 ,

γ3 → γ3 , γ̄3 → −γ̄3 + 2u1γ3 ,

γ4 → γ4 , γ̄4 → −γ̄4 + 2u1γ4 .

(3.19)

R2 :


γ1 → γ1 , γ̄1 → −γ̄1 − 2u1γ1 ,

γ2 → −γ2 , γ̄2 → γ̄2 + 2u1γ2 ,

γ3 → −γ3 , γ̄3 → γ̄3 − 2u1γ3 ,

γ4 → −γ4 , γ̄4 → γ̄4 − 2u1γ4 .

(3.20)

R3 :


γ1 → −γ2 , γ̄1 → γ̄2 + 2u1γ2 ,

γ2 → −γ1 , γ̄2 → γ̄1 + 2u1γ1 ,

γ3 → −γ3 , γ̄3 → γ̄3 − 2u1γ3 ,

γ4 → −γ4 , γ̄4 → γ̄4 − 2u1γ4 .

(3.21)

R4 :


γ1 → γ1 , γ̄1 → −γ̄1 − 2u1γ1 ,

γ2 → −γ2 , γ̄2 → γ̄2 + 2u1γ2 ,

γ3 → γ3 , γ̄3 → −γ̄3 + 2u1γ3 ,

γ4 → γ4 , γ̄4 → −γ̄4 + 2u1γ4 .

(3.22)

Furthermore, we can calculate the fixed point sets for the orientifold projections {Ri , RiQ ,
RiQ2, RiQ3}. The results are listed in tables 8–11 for the respective Ri. In figures 4–8 we

illustrate the O6-planes for the lattices AaAB and AaBB.5

5We will see in the next section that the other a-type lattices are related to these.
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O6-planes for AAA-lattice of A3 ×A1 ×B2-orbifold

Projection Fixed point set

R2 4π136

R2Q 2
(
− u1

(
π125 + π135 − π235 + 2(π126+π136−π236)

)
− π245 − π345 − 2(π246+π346)

)
R2Q

2 4(−π125 − π126 + π235 + π236)

R2Q
3 2

(
− u1(π135 − π125 + π235)− π145 − π245

)
Table 9. Toroidal cycles wrapped by the O6-planes for the AAA orientation of A3 ×A1 ×B2.

O6-planes for ABA-lattice of A3 ×A1 ×B2-orbifold

Projection Fixed point set

R3 (4− 4u1)(π126 + π136 − π236)

R3Q 2
(
− 2u1(π125−π235+2π126−2π236)− π145 − 2π245 − π345 − 2(π146+2π246+π346)

)
R3Q

2 (4− 4u1)(−π125 − π126 + π135 + π136 + π235 + π236)

R3Q
3 2(−2u1π135 + π145 − π345)

Table 10. Toroidal cycles wrapped by the O6-planes for the ABA orientation of A3 ×A1 ×B2.

O6-planes for ABB-lattice of A3 ×A1 ×B2-orbifold

Projection Fixed point set

R4 (2− 2u1)(π125 + π135 − π235)

R4Q 4
(
2u1(π126 − π236) + π146 + 2π246 + π346

)
R4Q

2 (2− 2u1)(π125 + 2π126 − π135 − 2π136 − π235 − 2π236)

R4Q
3 4

(
2u1(π135 + π136)− π145 − π146 + π345 + π346

)
Table 11. Toroidal cycles wrapped by the O6-planes for the ABB orientation of A3 ×A1 ×B2.

π5

π6

π1

π3

π4

π2

A3 × A1 B2

R1
R1Q

2

Figure 4. R1- and R1Q
2-contributions to the O6-planes of the A3 × A1 × B2-orientifold with

AaAB-lattice (u1 = 0).
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π5

π6

π1

π3

π2

π4

A3 × A1 B2

R1Q
R1Q

3

Figure 5. R1Q- and R1Q
3-contributions to the O6-plane of the A3 × A1 × B2-orientifold with

AaAB-lattice (u1 = 0).

π5

π6

π1

π3

π2

π4

A3 × A1 B2

R4

the se
ond �xed point set

Figure 6. R4-contribution to the O6-plane of the A3 × A1 × B2-orientifold with AaBB-lattice

(u1 = 0). The second fixed point set is located at π4 = 1
2 and denoted by the orange point in the

picture.

Adding up all contributions we obtain the corresponding O6-planes:

πO61 := (1− 2u1)γ1 + (1 + 2u1)γ2 − 2(γ̄1 − γ̄2) , (3.23a)

πO62 := −2γ1 − 2u1γ2 − 2γ̄2 , (3.23b)

πO63 := 2(γ2 − γ1)− 4u1γ2 − 2(γ̄1 + γ̄2) , (3.23c)

πO64 := (2− 2u1)γ1 + 4u1γ2 + 4γ̄2 . (3.23d)

It is easy to check that the resulting O6-planes are invariant under corresponding orientifold

projections defined in equations (3.19) to (3.22).

3.2 Supersymmetric cycles

From the phenomenological point of view (like chirality and stability at low energies)

N = 1 supersymmetric models are particularly interesting. This requires the D6-branes
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π5

π6

π1

π3

π2

π4

A3 × A1 B2

R4Q
2

the se
ond �xed point set

Figure 7. R4Q
2-contributions to the O6-plane of the A3×A1×B2-orientifold with AaBB-lattice

(u1 = 0). The second fixed point set is located at π4 = 1
2 and denoted by the green point in the

picture.

π5

π6

π1

π3

π2

π4

A3 × A1 B2

RQ
RQ3

Figure 8. R4Q- and R4Q
3-contributions to the O6-plane of the A3 × A1 × B2-orientifold with

AaBB-lattice (u1 = 0).

to preserve some supersymmetry, which leads to additional geometrical conditions on the

allowed three-cycles; namely, the three-cycles have to be special Lagrangian. A three-cycle

π is called special Lagrangian (sLag) if it satisfies

J |π = 0 , (3.24a)

Im(eiϕΩ3) |π = 0 , (3.24b)

Re(eiϕΩ3) |π > 0 , (3.24c)

where ϕ is an arbitrary constant phase, and J and Ω3 are the covariantly constant Kähler

two-form and holomorphic three-form, respectively, that always exist on a Calabi-Yau

threefold (and, in particular, on the T 6/Z4 orbifold we consider here). They can be defined
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locally by

Ω3 = dz1 ∧ dz2 ∧ dz3, J = i
∑
i,j̄

gij̄dz
i ∧ dz̄j̄ . (3.25)

If two Lagrangian three-cycles are calibrated by different values of the phase ϕ, the corre-

sponding D6-branes preserve different supersymmetries. Since the three-cycle wrapped by

the O6-plane is automatically sLag, the phase ϕ is fixed to ϕ = ϕO6, and we need to search

for the Lagrangian three-cycles which are calibrated by Re(eiϕO6Ω3).

In terms of the ~θ, the angle ϕO6 is given by

ϕO6 = −1

2

∑
i

θi (+π) . (3.26)

The possible +π in the previous equation arises from the freedom we have to choose either∫
(eiϕΩ3) > 0 or

∫
(eiϕ+iπΩ3) > 0 as the calibration condition, or, alternatively, the global

sign of the three-cycle wrapped by the O6-plane.

B2 × (A1)
2 ×B2. Due to the factorisable structure of the B2 × (A1)2 ×B2-lattice, any

three-cycle with the wrapping numbers (ni,mi)i=1,2,3 is automatically Lagrangian. The

condition that a D6-brane wrapping such a three-cycle preserves the same supersymmetry

as the O6-plane (i.e. is sLag with identical calibration) is∑
i

φi = 0 mod 2π (3.27)

where φi is an angle between the three-cycle and the O6-plane on the two-torus T 2
(i).

Fractional three-cycles with the same calibration arise when (fractions of) exceptional

three-cycles are added through which a given bulk cycle passes with the one restriction on

the relative prefactor discussed below equation (2.10); for more details see [34].

A3 × A3. With respect to the complex coordinates (3.4), the Q-invariant metric g of

equation (2.13) is given by

gij̄ =

 2R2
1(1 + a) 0 R1R2

(
e− c− i(c+ 2d+ e)

)
0 −8u2aR

2
1 0

R1R2

(
e− c+ i(c+ 2d+ e)

)
0 2R2

2(1 + b)

 . (3.28)

The Kähler-form J on the A3 ×A3-lattice background is given by

J := 2R2
1(1+a)ω1−2u2aR

2
1ω2 +2R2

2(1+ b)ω3 +R1R2

(
(c+2d+e)ω4 +(c−e)ω5

)
(3.29)

with real Z4-invariant two-forms ωi:

ω1 := dx12 + dx23,

ω2 := dx14 − dx15 + dx16 − dx24 + dx25 − dx26 + dx34 − dx35 + dx36,

ω3 := dx45 + dx56,

ω4 := dx14 − dx16 + dx25 − dx34 + dx36,

ω5 := −dx15 + dx24 − dx26 + dx35,

(3.30)

where dxij := dxi ∧ dxj .
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A3 ×A3-orientifolds

Lattice Involution Invariant part of J Moduli fixing ϕO6i

AAA R1 ω4 d = 0 0

BAA R2 ω4 + ω5 e = d −π4
AAB R3 ω4 − ω5 e = −d −π4
BAB R4 ω4 d = 0 π

2

Table 12. Additional moduli fixing and calibration arising from the condition RJ = −J for the

different choices of A3 ×A3 lattice orientations.

The Kähler two-form is negative under the orientifold projection, i.e. RJ = −J . This

means that the R-even part of J has to vanish, which fixes part of the moduli, in addition

to the fixing u1 = 0 (i.e. c + e = 0) mentioned in the previous subsection. The additional

moduli fixing for the different orientifold projections is given in table 12.

While, in the factorisable case, i.e. T 6 = (T 2)3, all factorised three-cycles are La-

grangian, this does not hold true anymore on the orbifolds with some non-factorisable

lattice. However, if we fix the moduli c = d = e = 0, i.e. both A3-tori are orthogonal to

each other, and use the relation dxi(πj) = δij , we can verify that any toroidal Z2-invariant

three-cycle (2.22) is automatically Lagrangian.

The next step is to specify the sLag condition on our orientifolds T 6/(Z4×ΩRi) in order

to find the supersymmetric three-cycles. The holomorphic three-form Ω3 = Re Ω3 + i Im Ω3

has the decomposition

Re(Ω3) =
1

8
√
u2

(ρ1 − u2ρ4) ,

Im(Ω3) =
1

8
√
u2

(ρ2 + u2ρ3) ,

(3.31)

with real Z4-invariant three-forms

ρ1 := −dx124 + dx125 + dx126 + 2dx134 − 2dx136 − dx234 − dx235 + dx236,

ρ2 := −dx124 − dx125 + dx126 + 2dx135 + dx234 − dx235 − dx236,

ρ3 := dx145 − 2dx146 + dx156 − dx245 + dx256 − dx345 + 2dx346 − dx356,

ρ4 := dx145 − dx156 + dx245 − 2dx246 + dx256 − dx345 + dx356.

(3.32)

Because this case is not so interesting from the phenomenological point of view, we do not

go into detail here and only give the supersymmetry parameters ϕO6i in table 12 for each

involution.

A3×A1×B2. With respect to the complex coordinates(3.13), the A3×A1×B2-orbifold

has the hermitian metric

gij̄ =

 2R2
3(1 + a) 0 R2R3√

2

(
b+ i(b+ 2c)

)
0 −8u2aR

2
3 0

R2R3√
2

(
b− i(b+ 2c)

)
0 2R2

2

 , (3.33)
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A3 ×A1 ×B2-orientifolds

Lattice Involution Invariant part of J Moduli fixing ϕO6i

AAB R1 ω4 b = −2c 0

AAA R2 ω4 + ω5 b = −c 5π
4

ABA R3 ω4 b = −2c 3π
2

ABB R4 ω4 − ω5 c = 0 π
4

Table 13. Moduli fixing due to RJ = −J and calibration for different choices of the anti-

holomorphic involution on the A3 ×A1 ×B2 lattice.

which gives rise to the Kähler-form

J = 2R2
3(1 + a)ω1 + 2R2

2ω2 − 4R2
3au2ω3 −R3R2(b+ 2c)ω4 −R3R2bω5 (3.34)

with the following Z4-invariant two-forms:

ω1 := dx12 + dx23,

ω2 := dx56,

ω3 := dx14 − dx24 + dx34,

ω4 := 2dx15 − dx16 + dx26 − 2dx35 + dx36,

ω5 := −dx16 + 2dx25 − dx26 + dx36.

(3.35)

The anti-symmetry of the orientifold projection on J leads here again to the fixing of some

moduli, as shown in the table 13.

As in the A3 × A3-case, we verify that any toroidal Z2-invariant three-cycle (2.34) is

automatically Lagrangian for the choice of fixing the moduli to b = c = 0.

Using the complex coordinates (3.13), we can write Ω3 in real coordinates

Re(Ω3) =
1

4
√
u2

(ρ1 + u1ρ3 − u2ρ4) ,

Im(Ω3) =
1

4
√
u2

(ρ2 + u2ρ3 + u1ρ4) ,

(3.36)

where the Z4-invariant three-forms are:

ρ1 := −dx125 + dx126 − dx136 + 2dx135 − dx235,

ρ2 := −dx125 + dx136 + dx235 − dx236,

ρ3 := 2dx145 − dx146 − dx246 − 2dx345 + dx346,

ρ4 := dx146 + 2dx245 − dx246 − dx346.

(3.37)

The next step is to find the sLags on the orientifolds T 6/(Z4×ΩRi) with A3×A1×B2

lattice. The sLag condition for any three-cycle (2.26) inherited from the torus can be
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expressed as follows,

Im(Ω3) |πtorus =
1

4
√
u2

(
[Q− P ] + u1[P̄ − Q̄]− u2[P̄ + Q̄]

)
, (3.38a)

Re(Ω3) |πtorus =
1

4
√
u2

(
[P +Q]− u1[P̄ + Q̄]− u2[P̄ − Q̄]

)
, (3.38b)

where P , Q, P̄ , Q̄ are the bulk wrapping numbers defined in (2.28). Using this decompo-

sition of a (fraction of a) bulk three-cycle into real and imaginary part in dependence of

the complex structure u and the bulk wrapping numbers for the corresponding O6-planes

we can calculate the supersymmetry parameters ϕO6i per lattice orientation displayed in

table 13.

3.3 Pairwise relations between choices of orientifold axes

We know that in the factorisable case a priori six choices of the anti-holomorphic involution

are possible, but that there are pairwise relations between them so that only four are

physically inequivalent. This means that different but equivalent orientifold projections

give rise to the same global semi-realistic particle models as discussed in section 3.1.1.

The same observation can be made in the non-factorisable cases. In order to find

these relations between the lattices, we compute all supersymmetric three-cycles which

do not overshoot the bulk RR tadpole cancellation condition in (3.1). Together with

the supersymmetry conditions (3.24) this gives rise to the restriction on the toroidal and

corresponding bulk wrapping numbers, e.g. for the AaAB-lattice of the A3 × A1 × B2

lattice, they are bounded by

A1n
3 −A2n

3 + 2A2m
3 6 8 ,

2B3n
3 − 2B2m

3 6 16 ,
⇐⇒ P +Q 6 8 ,

Q̄− P̄ 6 16 .
(3.39)

The restrictions on the other lattice orientations take a similar form. The required O6-

plane bulk wrapping numbers entering (3.1) are given in (3.12) for the A3×A3 lattice, and

in (3.23) for the A3 ×A1 ×B2 lattice.

A3 ×A3. For this orbifold we found a priori four possible involutions. However, due to

the relationR4Q
3 = −R1 between the involutions R1 andR4 the AAA- and BAB-lattices

give physically identical models on the A3 × A3-orientifold. But the relation between the

corresponding complex structure values cannot be verified more precisely at this point.

There are two possibilities

or

AAA dual to BAB and u2 = u′2 ,

AAA dual to BAB and u2 =
1

u′2
.

(3.40)

Moreover, the orientifold projections R2 and R3 — corresponding to the BAA and AAB

lattice orientation, respectively, according to table 12 — act on the three-cycles in the

same way, and therefore the supersymmetric three-cycles on the corresponding orientifolds

are the same. At first sight one might be tempted to identify these orientifolds, but the
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A3 ×A1 ×B2-orientifolds

Lattice Orien. proj. # of frac. cycles # of u2

AaAA R2 (u1 = 0) 2126 96

AaAB R1 (u1 = 0) 2126 96

AaBA R3 (u1 = 0) 5134 210

AaBB R4 (u1 = 0) 5134 210

AbAA R2

(
u1 = 1

2

)
2410 118

AbAB R1

(
u1 = 1

2

)
3646 140

AbBA R3

(
u1 = 1

2

)
3646 140

AbBB R4

(
u1 = 1

2

)
2410 118

Table 14. The number of supersymmetric fractional cycles bounded by the bulk RR tadpole

cancellation condition and the number of possible complex structure values u2 for different choices

of orientifold axes.

distinction of the length of the O6-planes, πO62 = 2πO63 , gives in principle rise to different

allowed ranks and lengths of bulk cycles in the RR tadpole cancellation conditions and

consequently to more possible models for the BAA-orientifold.

In conclusion, by investigating the structure of bulk three-cycles and their RR tadpole

cancellation conditions, we arrive at three physically inequivalent A3 × A3-lattice orienta-

tions AAA, BAA and AAB.

A3 × A1 × B2. In this case there are a priori eight possible lattice orientations. The

number of the corresponding fractional cycles not overshooting the bulk RR tadpole can-

cellation conditions and the number of possible complex structure values u2 are presented

in the table 14.

Furthermore, we can easily verify the following pairwise relations between the different

lattice orientations:

AaAA dual to AaAB and u2 =
1

2u′2
,

AaBA dual to AaBB and u2 =
1

2u′2
,

AbAA dual to AbBB and u2 =
1

4u′2
,

AbBA dual to AbAB and u2 =
1

4u′2
.

(3.41)

Altogether, we have thus four physically inequivalent lattices (two with u1 = 0 and

two with u1 = 1
2) and can restrict our further considerations to the lattice orientations

AAB and ABB.
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3.4 Cross-check: D6-branes on top of O6-planes

Non-factorisable T 6/Z4 orbifolds have been briefly studied in the past. For instance, in [63]

only D6-branes on top of the orientifold planes were considered, and only for a particular

choice of the moduli in (2.13) and (2.25), i.e., the radii of all tori being equal and all

the tori being orthogonal to each other. Our goal in this section is twofold. At first, we

will reproduce and extend the CFT methods and results of [63] to arbitrary values of the

moduli, in particular providing the Kaluza-Klein and winding modes for generic D6-brane

configuration. Secondly, we will compare this result with the geometric method described

earlier on, i.e. by requiring that the sLag three-cycles wrapped by generic D6-branes satisfy

the RR tapdole cancellation condition (3.1) — in the case at hand with only two stacks of

D6-branes.

Let us start by reviewing the method used in [63]. We denote a basis of the torus lattice

by {ei}. Let {e∗i } be a basis of the dual lattice such that ei · e∗j = δij . If the lattice vectors

ei form the Q-invariant metric gij , the dual vectors {e∗i } form the metric g∗ij = e∗i ·e∗j = g−1
ij .

Note that the dual vectors transform under Qt and Rtm (m=1,2,3,4).

In general, insertions of ΩRmQ2k and ΩRmQ2k+1 in the Klein bottle trace (and strings

starting on the 62k and 62k+1 branes in the annulus and Möbius strip) give different lattice

contributions, so we need to compute both cases separately. In the rest of this section we

will only consider the first case, but the second one is obtained analogously, by replacing

Rm by RmQ throughout the elaboration.

Let vi (i = 1, 2, 3) be the lattice vectors that span the (fraction of the) bulk three-cycle

wrapped by the O6-plane. They satisfy Rmvi = vi. The winding modes are described by

vectors wi, i = 1, 2, 3, satisfying Rmwi = −wi. The momentum modes pi appearing in

the Klein bottle amplitude in sectors where there are fixed tori correspond to vectors in

the dual lattice invariant under Rm. Using all these vectors we define the matrices

(MKB)ij := pi · pj , (3.42)

(MA)ij = (MMS)ij := vi · vj , (3.43)

(WKB)ij = (WMS)ij := wi ·wj . (3.44)

The lattice mode contributions (in the corresponding sector) for the Klein bottle, annulus,

and Möbius strip are

KB =
4n

(detMKB detWKB)1/2
, (3.45)

A =
detMA

(det g)1/2
, (3.46)

MS =
4n(detMMS)1/2

(detWMS)1/2
, (3.47)

where n = dim(M) = dim(W ), (n = 3 in the untwisted sector, which is the one we are

interested in).
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The tadpole cancellation condition is then given by

KB +
M2 ·A

16
− M ·MS

16
= 0 (3.48)

where M is the number of identical branes (in the RmQ case we will denote it by N).

A3 × A3. Let us start with the A3 × A3 lattice. For concreteness, we will focus on the

orientation AAB. We will show that the number of supersymmetric D6-branes needed to

cancel the (bulk) RR tadpole depends on the angle-moduli between the two A3-tori.

Recall that for the orientifold AAB we have the involution R3 (3.7), which fixes the

moduli to c + e = 0 (as consequence of u1 = 0) and e + d = 0 (see table 12). Using these

constraints and the Q-invariant metric g, we obtain the following momentum modes pi:

p1 = 2e∗1 − e∗2 , (3.49)

p2 = e∗1 − e∗3 , (3.50)

p3 = e∗4 + e∗5 − e∗6 . (3.51)

The winding modes are:

w1 = e1 + 2e2 + e3 , (3.52)

w2 = e4 − e5 , (3.53)

w3 = e4 + e6 . (3.54)

The vi vectors spanning the O6-planes are:

v1 = e1 , (3.55)

v2 = e3 , (3.56)

v3 = e4 + e5 . (3.57)

The determinants of the corresponding matrices MKB, MA and WKB are

detMKB = − 2

a(1 + a+ b+ ab− 2e2)R4
1R

2
2

,

detMA = −8a(1 + a+ b+ ab− 2e2)R4
1R

2
2 ,

detWKB = −32b(1 + a+ b+ ab− 2e2)R2
1R

4
2 .

(3.58)

They give rise to the lattice mode contributions to the untwisted sector

KB = 8

√
a

b

R1

R2
, A = 2

√
a

b

R1

R2
, MS = 32

√
a

b

R1

R2
. (3.59)

The untwisted RR tadpole cancellation condition is

KB +
M2 ·A

16
− M ·MS

16
= 0⇒ (M − 8)2 = 0 . (3.60)

The R3Q-case leads to the analogous result (N − 8)2 = 0. Due to the action of the Z2

symmetry on the corresponding Chan-Paton factors, the gauge group will have rank M
2 ×N

2 ,
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A3 ×A3 orientifolds with D-branes on top of the O-plane

A3 ×A3 General e = 0

Lattice Involution M = N M = N Gauge group

AAA R1 8 8 USp/SO(8)×USp/SO(8)

BAA R2 8 8 USp/SO(8)×USp/SO(8)

AAB R3 8 8 USp/SO(8)×USp/SO(8)

BAB R4 8 8 USp/SO(8)×USp/SO(8)

Table 15. IIA Orientifolds of Z4-orbifolds with the lattice of the type A3 × A3 with D-branes on

O-plane. For generic values of the metric moduli, the gauge group is U
(
M
2

)
×U

(
N
2

)
.

and the gauge group for generic values of moduli is U(4) × U(4) (with a possible gauge

symmetry enhancement U(4) ↪→ USp/SO(8),6 for special choices of geometric moduli —

in particular for the choice c = d = e = 0 of the two A3 lattices orthogonal to each other

in (2.13) —, where determining the appropriate type of symmetry enhancement requires

the development of CFT techniques at one-loop so far only available for (T 2)3 factorisable

backgrounds, see e.g. [37, 73, 79, 80, 96]).

The complementary purely geometric considerations are as follows: the cycle wrapped

by the O6-plane is −2γ1 − 2γ̄2. For e = 0, its contribution to the tadpole can be cancelled

by a stack of N1 = 4 branes wrapping the cycle −γ1 and a second stack of N2 = 4 branes

wrapping −γ̄2, giving rise to a gauge group USp/SO(8) × USp/SO(8) in agreement with

the CFT result.

The results for the remaining orientifold projections are summarised in the table 15.

A3 × A1 × B2. Let us now consider the A3 × A1 × B2 lattice. For simplicity we will

present the analysis of the case where the B2-torus is orthogonal to A3 × A1. This means

that the moduli b, c vanish.7 For the explicit computations, we will focus on the R1

involution (3.15).

AaAB. The condition u1 = 0 restricts the moduli d and a. From the definition of the

complex structure modulus (3.14) we obtain that d is fixed to 0 and a has to be negative.

Since the dual basis vectors e∗i transform under the transposed orientifold action Rt1,

the momentum modes pi are the eigenvectors of Rt1 to the eigenvalue +1:

p1 = e∗1 − e∗3 ,
p2 = 2e∗1 − e∗2 + e∗3 ,

p3 = e∗5 + e∗6 .

(3.61)

6This is a shorthand notation for either USp(8) or SO(8).
7For an arbitrary choice of these moduli (up to the moduli fixing in table 13), we obtain the same results.
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The winding modes are

w1 = e1 + 2e2 + e3 ,

w2 = e4 ,

w3 = e5 − e6 ,

(3.62)

and the vi vectors describing the bulk part of a fractional cycle parallel to some O6-plane are

v1 = e1 ,

v2 = e3 ,

v3 = e5 + e6 .

(3.63)

The determinants of the different matrices are

detMKB :=− 2

a(1+a)R4
3R

2
2

, detMA :=−8a(1+a)R4
3R

2
2 , detWKB := 8(1+a)R2

3R
2
2R

2
1 .

(3.64)

The lattice mode contributions to the untwisted sector are

KB = 16
√
−aR3

R1
, A = 4

√
−aR3

R1
, MS = 64

√
−aR3

R1
, (3.65)

and the corresponding untwisted RR tadpole cancellation condition reads

KB +
M2 ·A

16
− M ·MS

16
= 0⇒ (M − 8)2 = 0 . (3.66)

Thus, we get M = 8 which agrees with [63]. In a similar way one shows that the tadpole

condition from the R1Q-part gives rise to N = 16. The resulting gauge group is thus

U(4)×U(8) or some rank preserving gauge enhancement to SO(2M) or USp(2M) (for one

or both gauge factors).

The CFT calculation is complemented by purely geometric considerations as follows:

the cycle wrapped by the O6-planes is γ1 + γ2− 2(γ̄1− γ̄2). Its contribution to the tadpole

can be cancelled by a stack of N1 = 4 branes wrapping the fractional cycle 1
2γ1 + 1

2γ2 and

a stack of N2 = 8 branes wrapping −1
2 γ̄1 + 1

2 γ̄2 ± 1
2 γ̄3 ± 1

2 γ̄4 (any choice of sign for the

exceptional part is allowed). Since the first stack is invariant under the orientifold action,

the actual gauge group is SO/USp(8) × U(8). Our result — which agrees for both (CFT

and cycle homology) methods — differs slightly from [63] in the fact that the first gauge

factor experiences a gauge group enhancement, which they do not mention.

AbAB. In this case, from the condition u1 = 1
2 we obtain

d = −aR3

R1
, a

(
1 + a

R2
3

R2
1

)
< 0 . (3.67)

The momentum modes pi are

p1 = e∗1 − e∗3 ,
p2 = 2e∗1 − e∗2 + e∗4 ,

p3 = e∗6 .

(3.68)
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A3 ×A1 ×B2 orientifolds with D-branes on top of the O-planes

A3 ×A1 ×B2 u1 = 0 u1 = 1
2

Lattice Involution M N Gauge group M N Gauge group

AAA R2 16 8 U(8)×USp/SO(8) 16 4 U(8)×USp/SO(4)

AAB R1 8 16 USp/SO(8)×U(8) 8 8 USp/SO(8)×U(4)

ABA R3 16 8 U(8)×USp/SO(8) 8 8 U(8)×USp/SO(8)

ABB R4 8 16 USp/SO(8)×U(8) 4 16 USp/SO(4)×U(8)

Table 16. IIA Orientifolds of Z4-orbifolds with the lattice of the type A3×A1×B2 with D-branes

on top of the O-planes canceling the RR tadpoles.

The winding modes wi and lattice vectors vi are

w1 = e1 + 2e2 + e3 ,

w2 = e2 + e4 ,

w3 = e5 ,

(3.69)

v1 = e1 ,

v2 = e3 ,

v3 = e5 + 2e6 .

(3.70)

The determinants of the different matrices are thus given by

detMKB=
−2

(a+a2)R2
2R

4
3

, detMA= −8(1 + a)aR2
2R

4
3 , detWKB= 8(1 + a)(R2

1 + aR2
3)R2

2R
2
3 ,

(3.71)

and the resulting untwisted RR tadpole cancellation condition reads

KB +
M2 ·A

16
− M ·MS

16
= 0⇒ (M − 8)2 = 0 , (3.72)

i.e. we obtain M = 8. In a similar manner, the R1Q-insertion gives rise to N = 8.

Therefore, the gauge group is U(4)×U(4) or some rank preserving gauge group enhancement

thereof.

The complementary considerations in terms of cycle homologies are as follows: the

cycle wrapped by the O6-planes is 2γ2− 2(γ̄1− γ̄2). Its contribution to the tadpole can be

cancelled, for instance, by a stack of N1 = 4 branes wrapping the fractional cycle 1
2γ1 + 1

2γ2

and a stack of N2 = 4 branes wrapping −1
2γ1 + 1

2γ2 − γ̄1 + γ̄2 ±
(

1
2γ3 − γ̄3

)
±
(

1
2γ4 − γ̄4

)
(any choice of sign for the exceptional part is allowed). Naively, this gives rise to the gauge

group U(4) × U(4), but the first stack maps to itself under the orientifold action, which

enhances the symmetry to USp/SO(8)×U(4).

The results for the remaining orientifold projections can be derived analogously and

are summarised in the table 16.

The column u1 = 0 agrees mostly with the result [63], while the results for u1 = 1
2 are

presented here for the first time. We can also see the relation between the lattices (3.41) if

we interchange M and N .
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4 Factorisation of non-factorisable orbifolds

In this section we will show that both non-factorisable orbifolds can be written in a fac-

torised form. This identification between the lattices was already detected in [97] by con-

sideration of factorisable orbifolds. Here we want to explain which conclusions this identifi-

cation means from the point of view of non-factorisable orbifolds. We make the restriction

that in the first non-factorisable orbifold background, both A3 lattices are orthogonal to

each other, and in the second non-factorisable orbifold background, the A3 × A1 lattice is

orthogonal to the B2 lattice. This fixes the moduli to c = d = e = 0 and b = c = 0, respec-

tively. On both orbifolds we can find a real basis such that the non-factorisable structure

of the lattice decomposes into three two-tori, but an additional Z2 shift symmetry appears.

Any three-cycle, written now as a product of three one-cycles on each two-torus, is au-

tomatically Z2-invariant. Moreover, only Z2-invariant three-cycles on the non-factorisable

lattice can be expressed as three-cycles with respect to the new basis. Therefore, the num-

ber of wrapping numbers is reduced from twelve (A3 × A3) or ten (A3 × A1 × B2) to six

in agreement with the naive expectation from the known factorisable orbifold backgrounds

(T 2)3/ZN or (T 2)3/(ZN × ZM ).8

Because any three-cycle, written in the new basis, is Z2-invariant, it follows that it is

automatically Lagrangian. Furthermore, it can be verified that the sLag condition can be

expressed in the same form as for the usual factorisable orbifolds: the sum of the angles

between the one-cycles wrapped by supersymmetric D6-branes on each two-torus and the

Ri-invariant O6-plane has to vanish (mod 2π).

A3 ×A3. In this case, we introduce new coordinates along the directions

v1 := π1 + π2 , v2 := π2 + π3 , v3 := π1 + π3 ,

v4 := π4 + π6 , v5 := π4 + π5 , v6 := π5 + π6 .
(4.1)

With respect to this basis, the metric g and the Coxeter element Q take a factorised form,

g = diag
(
2(1 + a)R2

1, 2(1 + a)R2
1, −4aR2

1,−4bR2
2, 2(1 + b)R2

2, 2(1 + b)R2
2

)
, (4.2)

Q = diag

(
0 −1

1 0

)
⊕
(
−1 0

0 −1

)
⊕
(

0 −1

1 0

)
, (4.3)

and also the orientifold projections Ri become factorised, e.g.:

R4 = diag

(
1 0

0 −1

)
⊕
(

1 0

0 −1

)
⊕
(

1 0

0 −1

)
. (4.4)

8Note, however, that due to the additional symmetry some of the new wrapping numbers can now also

be half-integer.
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v1

v2

v3

v4

v5

v6

Figure 9. Shift identifications of points on the factorised form of the A3 ×A3-lattice by v1+v2+v3
2

(red) and v4+v5+v6
2 (green).

But as already mentioned, the basis change gives rise to additional symmetries, which

identify points of the factorised torus by the following shifts

p ' p+
v1 + v2 + v3

2
,

p ' p+
v4 + v5 + v6

2
,

(4.5)

for any point p on the torus, as depicted in figure 9.

In the new coordinates, only six wrapping numbers occur,

πtorus := (ñ1v1 + m̃1v2) ∧ (ñ2v3 + m̃2v4) ∧ (ñ3π5 + m̃3π6) , (4.6)

in terms of which the bulk wrapping numbers defined in (2.14) and (2.16) can be rewritten

as follows:

A1q
1 = −A3q

1 = −(ñ1 + m̃1)ñ2ñ3, B1m
1 = −B3m

1 = ñ1m̃2(ñ3 + m̃3) ,

A1r
1 = −A3r

1 = −(ñ1 + m̃1)ñ2(ñ3 + m̃3) , B1n
1 = −B3n

1 = (ñ1 + m̃1)m̃2(ñ3 + m̃3) ,

A1s
1 = −A3s

1 = −(ñ1 + m̃1)ñ2m̃3, B1p
1 = −B3p

1 = m̃1m̃2(ñ3 + m̃3) ,

A2q
1 = (ñ1 − m̃1)ñ2ñ3, B2m

1 = ñ1m̃2(−ñ3 + m̃3) ,

A2r
1 = (ñ1 − m̃1)ñ2(ñ3 + m̃3) , B2n

1 = (ñ1 + m̃1)m̃2(−ñ3 + m̃3) ,

A2s
1 = (ñ1 − m̃1)ñ2m̃3, B2p

1 = m̃1m̃2(−ñ3 + m̃3) .

(4.7)

Note that due to the shift symmetry (4.5), the wrapping numbers ñ2 and m̃2 can also have

half-integer values.

On the factorised lattice, the geometric difference between the length of the O6-planes

on the AAB- and BAA-orientations becomes clear: for the AAB-lattice, the R-invariant

O6-plane is placed along the axes v1 − v2 and v3 on T 2
(1) × T 2

(2) and therefore it passes

through the points which are identified by the shift symmetry (4.5), but this is no longer

the case for the BAA-lattice.

A3 ×A1 ×B2. Here it suffices to introduce new directions only on A3 ×A1:

v1 := π1 + π2 , v3 := π1 + π3 ,

v2 := π2 + π3 , v4 := π4 .
(4.8)
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Figure 10. Shift symmetry of the factorised form of the A3 ×A1-lattice along v1+v2+v3
2 (in red).

This basis factorises the torus, such that the metric becomes

g = diag

(
2(1 + a)R2

3 0

0 2(1 + a)R2
3

)
⊕
(
−4aR2

3 −4au1R
2
3

−4au1R
2
3 R2

1

)
⊕
(

2R2
2 −R2

2

−R2
2 R2

2

)
. (4.9)

For the Coxeter element Q and the orientifold projections Ri we obtain

Q = diag

(
0 −1

1 0

)
⊕
(
−1 0

0 −1

)
⊕
(

1 −1

2 −1

)
, (4.10)

R1 = diag

(
0 −1

−1 0

)
⊕
(

1 2u1

0 −1

)
⊕
(

1 −1

0 −1

)
, (4.11)

R4 = diag

(
−1 0

0 1

)
⊕
(

1 2u1

0 −1

)
⊕
(

1 −1

0 −1

)
. (4.12)

Also in this case the basis change gives rise to an additional shift symmetry displayed in

figure 10,

p ' p+
v1 + v2 + v3

2
for any point p on the torus . (4.13)

Instead of ten wrapping numbers which we need to describe a fractional three-cycle in

non-factorisable coordinates, in the v-basis the usual six wrapping numbers are sufficient:

πtorus := (ñ1v1 + m̃1v2) ∧ (ñ2v3 + m̃2v4) ∧ (m3π5 + n3π6) . (4.14)

The relation between the non-factorised toroidal and bulk wrapping numbers in (2.26)

and (2.29) and the new factorised ones is given by

A1 = −A3 = −(ñ1 + m̃1)ñ2, A2 = (ñ1 − m̃1)ñ2,

B1 = ñ1m̃2, B3 = m̃1m̃2 = B2 −B1 .
(4.15)

Notice that here, due to the shift symmetry (4.13), the wrapping number ñ2 can be half-

integer if m̃1 + ñ1 is even.
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A3 ×A1 ×B2

Two generations Four generations

AaAB ∞, 1 ∞, 1
AbAB ∞ ∞
AaBB ∞, 1, 3, 12 , 13 , 14 , 16 , 18 , 19 , 1

12 ∞, 1, 2, 12 , 13 , 14 , 16 , 19 , 1
12

AbBB ∞, 1, 14 −

Table 17. The possible values of Im(U) for global supersymmetric Pati-Salam models, with ∞
denoting that it can be choosen arbitrarily.

5 Concrete Pati-Salam models on A3 ×A1 ×B2

In this section we present the construction of some local and global semi-realistic su-

persymmetric Pati-Salam (PS) models using intersecting D6-branes.9 In section 3.3 we

have seen that there exist duality relations between the different orientifold projections Ri
(i = 1, 2, 3, 4) and that only four lattice orientations are independent. For the construc-

tion of particle spectra, we choose the AAB- and ABB-types lattices. In addition to the

RR tadpole cancellation and sLag conditions, we require that the U(4)a stack is free from

(anti-)symmetric representations.10 An intensive computer search showed that only global

supersymmetric PS-models with two or four generations are possible. The supersymme-

try conditions give rise to restrictions on the allowed values of the imaginary part u2 of

the complex structure modulus U , and only a small number of values can be used for the

construction of global PS-models without overshooting the bulk RR tadpole cancellation

condition. The allowed values of u2 are illustrated in the table 17. For some branes, some

bulk wrapping numbers turn out to be zero, and thus the supersymmetry conditions do

not fix the complex structure. If PS-models can be constructed just with such branes, we

will list the arbitrariness in Im(U) as ∞ in table 17.

Two generations. We start the search for global PS-models with the case of two particle

generations and note some general properties of the models obtained. All models with

U(4)×U(2)×U(2)-gauge group in the visible sector contain chiral particles which transform

in the (anti-)symmetric representation of the U(2) on the b and/or c-stack. The spectrum

of the models with gauge symmetry enhancement U(1) ↪→ USp/SO(2) on both the b- and

c-stack, on the other hand, lacks the bifundamental representations in the bc-sector, i.e.,

there is no Higgs field in the chiral spectrum of such models. In table 18, we provide an

explicit example of a PS-model with U(4)×U(2)×USp/SO(2) gauge group in the visible

sector. Its chiral spectrum is given in the table 19.

9Notice that for generic configurations of gauge groups, global models do not only have to satisfy the RR

tadpole cancellation conditions, but also the K-theory constraints, which are usually derived by scanning

through all possible probe D-branes supporting USp(2) gauge factors [98]. For PS models with all gauge

groups (including ‘hidden’ ones) of even rank, the K-theory constraints are, however, trivially fulfilled.
10The systematic computer search on the A3 × A1 × B2 lattices actually showed that all two- and four-

generation models of PS-type satisfy this condition without a priori imposing it.
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D6-branes configuration for two generation PS-model on A3 ×A1 ×B2-orientifold

Stack (m1, n1, p1, q1)× (m2, n2, p2, q2)× (m3, n3) Homology cycle

U(4)a (1, 0,−1, 0)× (1, 0, 0, 1)× (−1,−2) 1
2γ1 − 1

2γ2 − γ̄1 + γ̄2

U(2)b (0, 1, 1, 0)× (0, 0, 0, 1)× (1, 2) γ̄2 − γ̄3 + γ̄4

USp/SO(2)c (1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1 + γ3 − γ4
USp/SO(2)h1

(1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1 − γ3 + γ4

U(2)h2
(0, 1, 1, 0)× (0, 0, 0, 1)× (1, 2) γ̄2 − γ̄3 − γ̄4

Table 18. D6-branes for a two generation supersymmetric PS-model with AaBB-lattice and

u2 = 1/2.

Chiral spectrum of two generation PS-model on A3 ×A1 ×B2-orientifold

Sector SU(4)a × SU(2)b ×USp/SO(2)c ×USp/SO(2)h1 × SU(2)h2 ×U(1)3

ab (4, 2̄, 1, 1, 1)(1,−1,0)

ab′ (4, 2, 1, 1, 1)(1,1,0)

ac = ac′ 2× (4̄, 1, 2, 1, 1)(−1,0,0)

bc = bc′ 4× (1, 2, 2̄, 1, 1)(0,1,0)

ah1 = ah′1 2× (4̄, 1, 1, 2, 1)(−1,0,0)

bh1 = bh′1 4× (1, 2, 1, 2̄, 1)(0,−1,0)

ah2 (4, 1, 1, 1, 2̄)(1,0,−1)

ah′2 (4, 1, 1, 1, 2)(1,0,1)

Table 19. Chiral spectrum for the two generation U(4)×U(2)×USp/SO(2)×USp/SO(2)×U(2)-PS

model with D6-brane configuration given in table 18.

In appendix A, we provide an explicit example for each other type of visible gauge

group, i.e. U(4)×U(2)×U(2) and U(4)×USp/SO(2)×USp/SO(2).

Four generations. In a similar way, we can realise global supersymmetric PS-models

with four generations with different gauge groups (without/with some enhancement of the

‘left’ and ‘right’ stack) in the visible sector. In general, only the U(4) × USp/SO(2) ×
USp/SO(2)-models do not contain chiral matter in the (anti-)symmetric representation on

the b- and c- stacks. But these models also do not contain chiral states in the bifunda-

mental representation of the bc-sector, which could serve as a (chiral) Higgs multiplet. In

appendix A, we collect several examples of global D6-brane configurations of such types

together with their chiral spectrum.

Three generations. As mentioned above, there are no global supersymmetric Pati-

Salam models with three generations. But it is possible to construct models where the

bulk part of the tadpole vanishes and only the exceptional part remains. Such local models

are only realisable on the ABB-orientifolds. More precisely, for the AaBB-lattice only

u2 = 3 , 1
3 provides such models, and the gauge group is enhanced on the b- and c-stacks.
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For the AbBB-lattice, it is possible to construct local models with u2 = 3
2 with sym-

metry enhancement on the b- and/or c-stack. A general property of all such models is

the appearance of chiral particles which transform in the (anti-)symmetric representation

of U(4)a.

6 Discussion and conclusions

In this article, we explored the full three-cycle geometry of the non-factorisable T 6/Z4

orbifold on the two possible root lattices A3 ×A3 and A3 ×A1 ×B2 and compared it with

the factorisable B2×(A1)2×B2 case. We found that, under the anti-holomorphic involution

R of Type IIA/ΩR orientifolds, there exist a priori four different lattice orientations for

A3×A3, and eight for A3×A1×B2. However, a closer look at the number of supersymmetric

(i.e. sLag) fractional three-cycles bounded in their length by the RR tadpole cancellation

conditions and by the allowed values for the complex structure moduli, which encode the

relative angles between the different root lattices as well as between the generators within

each A3 lattice, reveals — in analogy to the factorisable cases [42, 46, 48] — the existence of

several dualities, which lead to identical physics for different choices of lattice orientations

under R. More precisely, on A3 × A3 we found a duality relation between the AAA and

BAB lattices, leaving three independent choices. For the A3 × A1 × B2 lattice, there

are four pairwise duality relations (AaAA and AaAB, AaBA and AaBB, AbAA and

AbBB, AbBA and AbAB), leaving only four independent choices.

After computing the sLag three-cycles, in order to ascertain our results, we cross-

checked agreement of the RR tadpole cancellation conditions among our new purely geo-

metric derivation as well as via the ‘old’ CFT method, in particular for the special D6-brane

configurations on top of the O6-planes in [63], compared to which we generalised the CFT

results to arbitrary values of the angles inside the A3 lattices and the angle between the A3

and the A1 lattices. For the A3×A3 lattices and the a-lattices of A3×A1×B2, our results

derived in a twofold, mutually agreeing way (mostly) coincide with the results listed in [63],

while those corresponding to the b-type lattices of A3 ×A1 ×B2 are newly found here.

With the full list of allowed sLag three-cycles at hand, we proceeded to search for

local and global semi-realistic Pati-Salam models on both types of lattices. The A3 × A3

lattices happened to be very restricted — e.g. by the small number of available three-

cycles — and therefore unsuitable for model building. But the A3 × A1 × B2 lattice with

different orientations provided a very rich class of backgrounds with ample potential for

model building. Although the search for global Pati-Salam models — to which we restricted

ourselves here since the K-theory constraints are trivially fulfilled in that case — with three

generations did not bear any fruit, many models with two and four generations were found.

From a qualitative point of view, our results are in agreement with [99] — which studied

these non-factorisable orbifolds in the context of the heterotic string — in the sense that

the A3 ×A1 ×B2 lattice is the most promising non-factorisable one for model building.

Our first model searches typically lead to globally consistent models, where one or

more stacks of D-branes wrap three-cycles invariant under the anti-holomorphic involu-

tion R. While it is well known that in such cases an enhancement of the gauge group
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U(N) ↪→ USp(2N) or SO(2N) occurs, the correct distinction can — with the generally

available model building techniques to date — only be done by computing open string CFT

amplitudes such as the gauge thresholds for factorisable backgrounds in [45, 46, 48, 83] and

reading off the correct sign for the orientifold projection from the Möbius strip contribu-

tion to either the one-loop beta function coefficient or to the RR tadpoles. Our finding

in section 4, that fractional three-cycles can be rewritten in a factorised form, suggests

that the CFT methods can be straightforwardly generalised to the non-factorisable back-

grounds of T 6/Z4 discussed here from a purely geometric viewpoint. By fully developing

the corresponding CFT, not only the compete chiral plus vector-like matter spectrum can

be determined, but also the low-energy effective action can (in principle) be derived. Iden-

tifying all probe D-branes supporting USp(2) gauge groups by means of CFT techniques is

furthermore necessary to determine the K-theory constraints for all future Standard Model

or GUT model building.

Last but not least, it will be interesting to extend the methods for studying non-

factorisable orbifolds to other point groups ZN 6=4, and to incorporate closed string fluxes

and study if particle physics models with (nearly) complete stabilisation of the closed string

moduli are within reach.
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A More Pati-Salam models

In this appendix, we provide additional explicit examples of global Pati-Salam models with

two and four generations on the A3 ×A1 ×B2 lattice.

A.1 2 generations

In the main text, we presented a global model where one of the left- or right-symmetric

groups of the Pati-Salam gauge group is provided by an enhanced SO(2)L/R or USp(2)L/R
symmetry. We also found global models where none or both left- and/or right-symmetric

groups are replaced by an enhanced gauge symmetry; we will show an example of each of

type in the following.

Tables 20 and 21 show the D6-branes and chiral spectrum, respectively, of a global

Pati-Salam model with visible gauge group U(4) ×U(2)×U(2).

Tables 22 and 23 show the D6-branes and chiral spectrum, respectively, of a global

Pati-Salam model with visible gauge group U(4) ×USp/SO(2)×USp/SO(2).
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D6-branes configuration for a two generation PS-model on A3 ×A1 ×B2-orientifold

Stack (m1, n1, p1, q1)×(m2, n2, p2, q2)×(m3, n3) Homology cycle

U(4)a (1, 2, 1, 0)× (0, 0, 0, 1)× (0, 1) γ̄2 + γ̄3

U(2)b (1, 1, 0, 0)× (1, 0, 1,−1)× (0,−1) 1
2 (γ1+γ2−γ3−γ4+γ̄1+γ̄2+γ̄3+γ̄4)

U(2)c (1, 1, 0, 0)× (1, 0, 1,−1)× (0,−1) 1
2 (γ1+γ2+γ3+γ4+γ̄1+γ̄2−γ̄3−γ̄4)

U(2)h1
(0, 1, 1, 0)× (0, 0, 0, 1)× (1, 2) γ̄2 − γ̄3 + γ̄4

USp/SO(4)h2
(1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1

Table 20. D6-branes for a global two generation PS-model on the AaBB-lattice with u2 = 1.

Chiral spectrum of a two generation PS-model on A3 ×A1 ×B2-orientifold

Sector SU(4)a × SU(2)b × SU(2)c × SU(2)h1
×USp/SO(4)h2

×U(1)4

ab 2× (4, 2̄, 1, 1, 1)(1,−1,0,0)

ac′ 2× (4̄, 1, 2̄, 1, 1)(−1,0,−1,0)

bc′ 2× (1, 2̄, 2̄, 1, 1)(0,−1,−1,0)

bb′ 2× (1, 3, 1, 1, 1)(0,0,0,0)

cc′ 2× (1, 1, 3, 1, 1)(0,0,0,0)

bh′1 2× (1, 2̄, 1, 2̄, 1)(0,−1,0,−1)

ch1 2× (1, 1, 2̄, 2, 1)(0,0,−1,1)

bh2 = bh′2 (1, 2, 1, 1, 4̄)(0,1,0,0)

ch2 = ch′2 (1, 1, 2, 1, 4̄)(0,0,1,0)

Table 21. Chiral spectrum of the two generation U(4) × U(2) × U(2) × U(2) × USp/SO(4)-PS

model with D-brane configuration displayed in table 20.

D6-branes configuration for a two generation PS-model on A3 ×A1 ×B2-orientifold

Stack (m1, n1, p1, q1)× (m2, n2, p2, q2)× (m3, n3) Homology cycle

U(4)a (1, 2, 1, 0)× (0, 0, 0, 1)× (0, 1) γ̄2 − γ̄4
USp/SO(2)b (1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1 + γ3 + γ4

USp/SO(2)c (1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1 − γ3 − γ4
U(4)h1

(1, 2, 1, 0)× (0, 0, 0, 1)× (0, 1) γ̄2 + γ̄4

USp/SO(2)h2 (1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1

Table 22. D6-branes for a global two generation PS-model on the AaBB-lattice with non-fixed u2.

A.2 4 generations

As in the previous case, we also found four-generation global Pati-Salam models where none,

one or both left- and/or right-symmetric groups are replaced by an enhanced symmetry

SO(2)L/R or USp(2)L/R. Here we will show a concrete example for each of these three cases.
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Chiral spectrum of a two generation PS-model on A3 ×A1 ×B2-orientifold

Sector SU(4)a ×USp/SO(2)b ×USp/SO(2)c × SU(4)h1
×USp/SO(2)h2

×U(1)2

ab = ab′ 2× (4, 2̄, 1, 1, 1)(1,0)

ac = ac′ 2× (4̄, 1, 2, 1, 1)(−1,0)

Table 23. Chiral spectrum of the two generation U(4)×USp/SO(2)×USp/SO(2)×USp/SO(2)×
U(4)-PS model with D6-brane configuration displayed in table 22.

D6-branes configuration for a four generation PS-model on A3 ×A1 ×B2-orientifold

Stack (m1, n1, p1, q1)×(m2, n2, p2, q2)×(m3, n3) Homology cycle

U(4) (0, 1, 1, 0)× (0, 0, 0, 1)× (1, 2) γ̄2 − γ̄3 − γ̄4
U(2) (0, 1, 1, 0)× (1, 0, 1,−1)× (0, 1) 1

2 (γ1−γ2+γ3+γ4−γ̄1+γ̄2+γ̄3+γ̄4)

U(2) (1, 1, 0, 0)× (1, 0, 1,−1)× (0,−1) 1
2 (γ1+γ2−γ3−γ4+γ̄1+γ̄2+γ̄3+γ̄4)

U(2)h1
(0, 1, 1, 0)× (0, 0, 0, 1)× (1, 2) γ̄2 − γ̄3 + γ̄4

USp/SO(4)h2 (1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1

Table 24. D6-branes for a global four generation PS-model on the AaBB-lattice with u2 = 1.

Chiral spectrum of a four generation PS-model on A3 ×A1 ×B2-orientifold

Sector SU(4)a × SU(2)b × SU(2)c × SU(2)h1
×USp/SO(4)h2

×U(1)4

ab (4, 2̄, 1, 1, 1)(1,−1,0,0)

ab′ 3× (4, 2, 1, 1, 1)(1,1,0,0)

ac (4̄, 1, 2, 1, 1)(−1,0,1,0)

ac′ 3× (4̄, 1, 2̄, 1, 1)(−1,0,−1,0)

bc 2× (1, 2, 2̄, 1, 1)(0,1,−1,0)

bb′ 2× (1, 3, 1, 1, 1)(0,0,0,0)

cc′ 2× (1, 1, 3, 1, 1)(0,0,0,0)

bh′1 2× (1, 2̄, 1, 2̄, 1)(0,−1,0,−1)

ch1 2× (1, 1, 2̄, 2, 1)(0,0,−1,1)

bh2 = bh′2 (1, 2, 1, 1, 4̄)(0,1,0,0)

ch2 = ch′2 (1, 1, 2, 1, 4̄)(0,0,1,0)

Table 25. Chiral spectrum of the four generation U(4) × U(2) × U(2) × USp/SO(4) × U(2)-PS

model with D6-brane configuration displayed in table 24.

Tables 24 and 25 show the D6-brane configuration and chiral spectrum, respectively,

of a Pati-Salam model with visible sector U(4) ×U(2)×U(2).

Tables 26 and 27 show the D6-brane configuration and chiral spectrum, respectively,

of a Pati-Salam model with visible sector U(4) ×U(2)×USp/SO(2).

Tables 28 and 29 show the D6-brane configuration and chiral spectrum, respectively,

of a Pati-Salam model with visible sector U(4) ×USp/SO(2)×USp/SO(2).
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D6-branes configuration a for four generation PS-model on A3 ×A1 ×B2-orientifold

Stack (m1, n1, p1, q1)×(m2, n2, p2, q2)×(m3, n3) Homology cycle

U(4)a (0, 1, 1, 0)× (0, 0, 0, 1)× (1, 2) γ̄2 + γ̄3 + γ̄4

U(2)b (0, 1, 1, 0)× (1, 0, 1, 1)× (0, 1) 1
2 (γ1−γ2−γ3−γ4−γ̄1+γ̄2−γ̄3−γ̄4)

USp/SO(2)c (1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1 + γ3 + γ4

U(3)h1 (0, 1, 1, 0)× (0, 0, 0, 1)× (1, 2) γ̄2 + γ̄3 − γ̄4
USp/SO(2)h2

(1, 1, 0, 0)× (1, 0, 1, 0)× (−1,−2) γ1

Table 26. D6-branes for a global four generation PS-model on the AaBB-lattice with u2 = 1.

Chiral spectrum of a four generation PS-model on A3 ×A1 ×B2-orientifold

Sector SU(4)a × SU(2)b ×USp/SO(2)c × SU(3)h1 ×USp/SO(2)h2 ×U(1)3

ab (4, 2̄, 1, 1, 1)(1,−1,0)

ab′ 3× (4, 2, 1, 1, 1)(1,1,0)

ac = ac′ 4× (4̄, 1, 2, 1, 1)(−1,0,0)

bc = bc′ (1, 2, 2̄, 1, 1)(0,1,0)

bb′ 2× (1, 3, 1, 1, 1)(0,0,0)

bh1 (1, 2, 1, 3̄, 1)(0,1,−1)

bh′1 (1, 2, 1, 3, 1)(0,1,1)

Table 27. Chiral spectrum of the four generation U(4)×U(2)×USp/SO(2)×U(3)×USp/SO(2)-PS

model with D6-brane configuration given in table 26.

D6-branes configuration for a four generation PS-model on A3 ×A1 ×B2-orientifold

Stack (m1, n1, p1, q1)× (m2, n2, p2, q2)× (m3, n3) Homology cycle

U(4)a (1, 0,−1, 0)× (0, 0, 0, 1)× (−1,−2) −γ̄1 + γ̄2 + 2γ̄4

USp/SO(2)b (0, 1, 0, 0)× (1, 0, 1, 0)× (1, 2) 1
2γ1 + 1

2γ2 − γ4
USp/SO(2)c (0, 1, 0, 0)× (1, 0, 1, 0)× (1, 2) 1

2γ1 + 1
2γ2 + γ4

USp/SO(4)h (0, 1, 0, 0)× (1, 0, 1, 0)× (1, 2) 1
2γ1 + 1

2γ2

Table 28. D6-branes for a global four generation PS-model one the AaAB-lattice with non-

fixed u2.

Chiral spectrum of a four generation PS-model on A3 ×A1 ×B2-orientifold

Sector SU(4)a ×USp/SO(2)b ×USp/SO(2)c ×USp/SO(4)h ×U(1)

ab = ab′ 4× (4, 2̄, 1, 1)+1

ac = ac′ 4× (4̄, 1, 2, 1)−1

Table 29. Chiral spectrum of the four generation U(4)×USp/SO(2)×USp/SO(2)×USp/SO(4)-PS

model with D6-brane configuration displayed in table 28.
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[26] M. Cvetič, G. Shiu and A.M. Uranga, Chiral four-dimensional N = 1 supersymmetric type

2A orientifolds from intersecting D6 branes, Nucl. Phys. B 615 (2001) 3 [hep-th/0107166]

[INSPIRE].
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