Skip to main content

Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions

A preprint version of the article is available at arXiv.

Abstract

We consider light-like Wilson loops with hexagonal geometry in the planar limit of \( \mathcal{N} \) = 4 Super-Yang-Mills theory. Within the Operator-Product-Expansion framework these loops receive contributions from all states that can propagate on top of the colour flux tube sourced by any two opposite edges of the loops. Of particular interest are the two-particle contributions. They comprise virtual effects like the propagation of a pair of scalars, fermions, and gluons, on top of the flux tube. Each one of them is thoroughly discussed in this paper. Our main result is the prediction of all the twist-2 corrections to the expansion of the dual 6-gluons MHV amplitude in the near-collinear limit at finite coupling. At weak coupling, our result was recently used by Dixon, Drummond, Duhr and Pennington to predict the full amplitude at four loops. At strong coupling, it allows us to make contact with the classical string description and to recover the (previously elusive) AdS3 mode from the continuum of two-fermion states. More generally, the two-particle contributions serve as an exemplar for all the multi-particle corrections.

References

  1. L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. A. Sever and P. Vieira, Multichannel conformal blocks for polygon Wilson loops, JHEP 01 (2012) 070 [arXiv:1105.5748] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N =4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].

    ADS  Article  Google Scholar 

  4. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].

    ADS  Article  Google Scholar 

  5. P. Dorey, Exact S-matrices, hep-th/9810026 [INSPIRE].

  6. K.M. Watson, Some general relations between the photoproduction and scattering of π mesons, Phys. Rev. 95 (1954) 228 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. F.A. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992) 1.

    Article  Google Scholar 

  8. G. Mussardo, Off critical statistical models: Factorized scattering theories and bootstrap program, Phys. Rept. 218 (1992) 215 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  9. L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  10. L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

    ADS  Article  Google Scholar 

  11. L. Dixon, J. Drummond, C. Duhr and J. Pennington, Bootstrapping six-gluon scattering in planar N = 4 super-Yang-Mills theory, arXiv:1407.4724 [INSPIRE].

  12. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. D. Fioravanti, P. Grinza and M. Rossi, Strong coupling for planar N = 4 SYM theory: an all-order result, Nucl. Phys. B 810 (2009) 563 [arXiv:0804.2893] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  14. L. Freyhult, A. Rej and M. Staudacher, A generalized scaling function for AdS/CFT, J. Stat. Mech. (2008) P07015 [arXiv:0712.2743] [INSPIRE].

  15. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  16. N. Beisert and M. Staudacher, Long-range PSU (2, 2|4) Bethe ansatze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  17. B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  18. D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  19. N. Dorey and M. Losi, Giant holes, J. Phys. A 43 (2010) 285402 [arXiv:1001.4750] [INSPIRE].

    MathSciNet  Google Scholar 

  20. A.V. Belitsky, A.S. Gorsky and G.P. Korchemsky, Logarithmic scaling in gauge/string correspondence, Nucl. Phys. B 748 (2006) 24 [hep-th/0601112] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  21. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

  22. A. Sever, P. Vieira and T. Wang, From polygon Wilson loops to spin chains and back, JHEP 12 (2012) 065 [arXiv:1208.0841] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  23. A.V. Belitsky, OPE for null Wilson loops and open spin chains, Phys. Lett. B 709 (2012) 280 [arXiv:1110.1063] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  24. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix IV. Gluons and fusion, arXiv:1407.1736 [INSPIRE].

  25. A.V. Belitsky, S.E. Derkachov and A.N. Manashov, Quantum mechanics of null polygonal Wilson loops, Nucl. Phys. B 882 (2014) 303 [arXiv:1401.7307] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  26. D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping null polygon Wilson loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  27. G. Papathanasiou, Hexagon Wilson loop OPE and harmonic polylogarithms, JHEP 11 (2013) 150 [arXiv:1310.5735] [INSPIRE].

    ADS  Article  Google Scholar 

  28. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].

    ADS  Article  Google Scholar 

  30. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  31. S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  32. L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, JHEP 09 (2011) 032 [arXiv:0911.4708] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  33. L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].

    MathSciNet  Google Scholar 

  34. S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  35. R. Roiban and A.A. Tseytlin, Spinning superstrings at two loops: Strong-coupling corrections to dimensions of large-twist SYM operators, Phys. Rev. D 77 (2008) 066006 [arXiv:0712.2479] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. A. Zamolodchikov, Ising spectroscopy II: particles and poles at T > T c , arXiv:1310.4821 [INSPIRE].

  37. K. Zarembo and S. Zieme, Fine structure of string spectrum in AdS 5 × S 5, JETP Lett. 95 (2012) 219 [Erratum ibid. 97 (2013) 504] [arXiv:1110.6146] [INSPIRE].

  38. B. Basso and G.P. Korchemsky, Embedding nonlinear O(6) σ-model into N = 4 super-Yang-Mills theory, Nucl. Phys. B 807 (2009) 397 [arXiv:0805.4194] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  39. R. Frassek, N. Kanning, Y. Ko and M. Staudacher, Bethe ansatz for yangian invariants: towards super Yang-Mills scattering amplitudes, Nucl. Phys. B 883 (2014) 373 [arXiv:1312.1693] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  40. L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for scattering amplitudes and spectral regularization, Phys. Rev. Lett. 110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].

    ADS  Article  Google Scholar 

  41. L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral parameters for scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 01 (2014) 094 [arXiv:1308.3494] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  42. D. Chicherin, S. Derkachov and R. Kirschner, Yang-Baxter operators and scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 881 (2014) 467 [arXiv:1309.5748] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  43. D. Chicherin and R. Kirschner, Yangian symmetric correlators, Nucl. Phys. B 877 (2013) 484 [arXiv:1306.0711] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  44. N. Beisert, J. Broedel and M. Rosso, On Yangian-invariant regularisation of deformed on-shell diagrams in N = 4 super-Yang-Mills theory, arXiv:1401.7274 [INSPIRE].

  45. H.M. Babujian, A. Foerster and M. Karowski, The nested SU(N ) off-shell Bethe ansatz and exact form-factors, J. Phys. A 41 (2008) 275202 [hep-th/0611012] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. H.M. Babujian, A. Foerster and M. Karowski, Exact form factors of the O(N ) σ-model, JHEP 11 (2013) 089 [arXiv:1308.1459] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  47. N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  48. J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].

    Article  Google Scholar 

  49. J. Golden and M. Spradlin, The differential of all two-loop MHV amplitudes in \( \mathcal{N} \) = 4 Yang-Mills theory, JHEP 09 (2013) 111 [arXiv:1306.1833] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  50. M.A.C. Torres, Cluster algebras in scattering amplitudes with special 2D kinematics, Eur. Phys. J. C 74 (2014) 2757 [arXiv:1310.6906] [INSPIRE].

    ADS  Article  Google Scholar 

  51. J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, arXiv:1401.6446 [INSPIRE].

  52. S. Caron-Huot and S. He, Three-loop octagons and n-gons in maximally supersymmetric Yang-Mills theory, JHEP 08 (2013) 101 [arXiv:1305.2781] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  53. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  54. N. Arkani-Hamed et al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605 [INSPIRE].

  55. N. Arkani-Hamed and J. Trnka, The amplituhedron, arXiv:1312.2007 [INSPIRE].

  56. A.E. Lipstein and L. Mason, From d logs to dilogs the super Yang-Mills MHV amplitude revisited, JHEP 01 (2014) 169 [arXiv:1307.1443] [INSPIRE].

    Article  Google Scholar 

  57. N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for planar \( \mathcal{N} \) = super-Yang-Mills theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].

    ADS  Article  Google Scholar 

  58. J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].

    ADS  Google Scholar 

  59. J. Bartels, L.N. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].

    ADS  Article  Google Scholar 

  60. J. Bartels, L.N. Lipatov and A. Prygarin, Collinear and Regge behavior of 2 → 4 MHV amplitude in N = 4 super Yang-Mills theory, arXiv:1104.4709 [INSPIRE].

  61. J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude in \( \mathcal{N} \) = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].

    ADS  Google Scholar 

  62. L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].

    ADS  Article  Google Scholar 

  63. S. Caron-Huot, When does the gluon reggeize?, arXiv:1309.6521 [INSPIRE].

  64. J. Bartels, A. Kormilitzin and L. Lipatov, Analytic structure of the n = 7 scattering amplitude in \( \mathcal{N} \) = 4 SYM theory at multi-Regge kinematics: conformal Regge pole contribution, Phys. Rev. D 89 (2014) 065002 [arXiv:1311.2061] [INSPIRE].

    ADS  Google Scholar 

  65. J. Bartels, J. Kotanski and V. Schomerus, Excited hexagon Wilson loops for strongly coupled N =4 SYM, JHEP 01 (2011) 096 [arXiv:1009.3938] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  66. J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The excited hexagon reloaded, arXiv:1311.1512 [INSPIRE].

  67. J. Bartels, V. Schomerus and M. Sprenger, Multi-Regge limit of the n-gluon bubble ansatz, JHEP 11 (2012) 145 [arXiv:1207.4204] [INSPIRE].

    ADS  Article  Google Scholar 

  68. B. Basso and A. Rej, Bethe ansätze for GKP strings, Nucl. Phys. B 879 (2014) 162 [arXiv:1306.1741] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  69. D. Fioravanti, S. Piscaglia and M. Rossi, On the scattering over the GKP vacuum, Phys. Lett. B 728 (2014) 288 [arXiv:1306.2292] [INSPIRE].

    ADS  Article  Google Scholar 

  70. B. Basso and A.V. Belitsky, Luescher formula for GKP string, Nucl. Phys. B 860 (2012) 1 [arXiv:1108.0999] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  71. B. Berg, M. Karowski, P. Weisz and V. Kurak, Factorized U(n) symmetric s matrices in two-dimensions, Nucl. Phys. B 134 (1978) 125 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  72. A.B. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  73. J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288 [hep-th/0510171] [INSPIRE].

    ADS  Article  Google Scholar 

  74. G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  75. S. Giombi, R. Ricci, R. Roiban, A.A. Tseytlin and C. Vergu, Quantum AdS 5 × S 5 superstring in the AdS light-cone gauge, JHEP 03 (2010) 003 [arXiv:0912.5105] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  76. L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  77. S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  78. J.L. Bourjaily, S. Caron-Huot and J. Trnka, Dual-conformal regularization of infrared loop divergences and the chiral box expansion, arXiv:1303.4734 [INSPIRE].

  79. N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  80. M.K. Benna, S. Benvenuti, I.R. Klebanov and A. Scardicchio, A test of the AdS/CFT correspondence using high-spin operators, Phys. Rev. Lett. 98 (2007) 131603 [hep-th/0611135] [INSPIRE].

    ADS  Article  Google Scholar 

  81. L.F. Alday, G. Arutyunov, M.K. Benna, B. Eden and I.R. Klebanov, On the strong coupling scaling dimension of high spin operators, JHEP 04 (2007) 082 [hep-th/0702028] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  82. N. Dorey and P. Zhao, Scattering of giant holes, JHEP 08 (2011) 134 [arXiv:1105.4596] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  83. A.B. Zamolodchikov and A.B. Zamolodchikov, Relativistic factorized S-matrix in two-dimensions having O(N ) isotopic symmetry, Nucl. Phys. B 133 (1978) 525 [JETP Lett. 26 (1977) 457] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Sever.

Additional information

ArXiv ePrint: 1402.3307

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basso, B., Sever, A. & Vieira, P. Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions. J. High Energ. Phys. 2014, 85 (2014). https://doi.org/10.1007/JHEP08(2014)085

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2014)085

Keywords

  • Wilson
  • ’t Hooft and Polyakov loops
  • Scattering Amplitudes
  • AdS-CFT Correspondence
  • Integrable Field Theories