Skip to main content
Log in

Thermodynamic bubble ansatz

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by the computation of scattering amplitudes at strong coupling, we consider minimal area surfaces in AdS 5 which end on a null polygonal contour at the boundary. We map the classical problem of finding the surface into an SU(4) Hitchin system. The polygon with six edges is the first non-trivial example. For this case, we write an integral equation which determines the area as a function of the shape of the polygon. The equations are identical to those of the Thermodynamics Bethe Ansatz. Moreover, the area is given by the free energy of this TBA system. The high temperature limit of the TBA system can be exactly solved. It leads to an explicit expression for a special class of hexagonal contours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931) 263.

    Article  MathSciNet  Google Scholar 

  2. N. Beisert, The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2005) 1 [hep-th/0407277] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  3. I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  4. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Mandal, N.V. Suryanarayana and S.R. Wadia, Aspects of semiclassical strings in AdS 5, Phys. Lett. B 543 (2002) 81 [hep-th/0206103] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  6. G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  7. V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].

  9. D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [SPIRES].

    MathSciNet  Google Scholar 

  10. N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. G. Arutyunov and S. Frolov, Simplified TBA equations of the AdS 5 × S 5 mirror model, JHEP 11 (2009) 019 [arXiv:0907.2647] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  13. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  14. P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  15. P. Dorey and R. Tateo, On the relation between Stokes multipliers and the T -Q systems of conformal field theory, Nucl. Phys. B 563 (1999) 573 [Erratum ibid. B 603 (2001) 581] [hep-th/9906219] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Dorey, C. Dunning and R. Tateo, The ODE/IM correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  17. K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46 (1976) 207 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. H.J. DeVega and N.G. Sanchez, Exact integrability of strings in D-dimensional de Sitter space-time, Phys. Rev. D 47 (1993) 3394 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  19. A. Jevicki, K. Jin, C. Kalousios and A. Volovich, Generating AdS string solutions, JHEP 03 (2008) 032 [arXiv:0712.1193] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdS n  × S n, Int. J. Mod. Phys. A 23 (2008) 2107 [arXiv:0806.2623] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  21. J.L. Miramontes, Pohlmeyer reduction revisited, JHEP 10 (2008) 087 [arXiv:0808.3365] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Jevicki and K. Jin, Moduli dynamics of AdS 3 strings, JHEP 06 (2009) 064 [arXiv:0903.3389] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Dorn, Some comments on spacelike minimal surfaces with null polygonal boundaries in AdS m , JHEP 02 (2010) 013 [arXiv:0910.0934] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP 03 (2010) 110 [arXiv:0903.2110] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  26. L.F. Alday and J. Maldacena, Minimal surfaces in AdS and the eight-gluon scattering amplitude at strong coupling, arXiv:0903.4707 [SPIRES].

  27. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [SPIRES].

  28. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].

  30. R. Koberle and J.A. Swieca, Factorizable Z(N) models, Phys. Lett. B 86 (1979) 209 [SPIRES].

  31. A.B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B 253 (1991) 391 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  32. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Quantum field theories in finite volume: excited state energies, Nucl. Phys. B 489 (1997) 487 [hep-th/9607099] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  34. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  36. P. Fendley, Excited-state thermodynamics, Nucl. Phys. B 374 (1992) 667 [hep-th/9109021] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Fendley and K.A. Intriligator, Scattering and thermodynamics of fractionally charged supersymmetric solitons, Nucl. Phys. B 372 (1992) 533 [hep-th/9111014] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. A.B. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. A.N. Kirillov and N.Y. Reshetikhin, Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum, J. Phys. A 20 (1987) 1565 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  40. M.J. Martins, Complex excitations in the thermodynamic Bethe ansatz approach, Phys. Rev. Lett. 67 (1991) 419 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of polygon Wilson loops in N = 4 SYM, JHEP 01 (2010) 050 [arXiv:0910.4898] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  45. V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [SPIRES].

    Article  ADS  Google Scholar 

  46. I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [SPIRES].

    ADS  Google Scholar 

  47. A. Bassetto, I.A. Korchemskaya, G.P. Korchemsky and G. Nardelli, Gauge invariance and anomalous dimensions of a light cone Wilson loop in lightlike axial gauge, Nucl. Phys. B 408 (1993) 62 [hep-ph/9303314] [SPIRES].

    Article  ADS  Google Scholar 

  48. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  49. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  50. A. Jevicki and K. Jin, Series solution and minimal surfaces in AdS, JHEP 03 (2010) 028 [arXiv:0911.1107] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Alday.

Additional information

ArXiv ePrint: 0911.4708

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alday, L.F., Gaiotto, D. & Maldacena, J. Thermodynamic bubble ansatz. J. High Energ. Phys. 2011, 32 (2011). https://doi.org/10.1007/JHEP09(2011)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)032

Keywords

Navigation