Skip to main content
Log in

Top partner probes of extended Higgs sectors

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ratios to these extended Higgs sector states. In fact, top partner decays may provide the most promising discovery mode for such scalars, especially given the large backgrounds to direct and associated production. In this paper, we present a search strategy for top partner decays to a charged Higgs boson and a bottom quark, focusing on the case where the charged Higgs dominantly decays to third-generation quarks to yield a multi-b final state. We also discuss ways to extend this search to exotic neutral scalars decaying to bottom quark pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Datta, A. Djouadi, M. Guchait and Y. Mambrini, Charged Higgs production from SUSY particle cascade decays at the CERN LHC, Phys. Rev. D 65 (2002) 015007 [hep-ph/0107271] [INSPIRE].

    ADS  Google Scholar 

  2. A. Datta, A. Djouadi, M. Guchait and F. Moortgat, Detection of MSSM Higgs bosons from supersymmetric particle cascade decays at the LHC, Nucl. Phys. B 681 (2004) 31 [hep-ph/0303095] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G.D. Kribs, A. Martin and T.S. Roy, Higgs boson discovery through top-partners decays using jet substructure, Phys. Rev. D 84 (2011) 095024 [arXiv:1012.2866] [INSPIRE].

    ADS  Google Scholar 

  4. V.D. Barger, R. Phillips and D. Roy, Heavy charged Higgs signals at the LHC, Phys. Lett. B 324 (1994) 236 [hep-ph/9311372] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Gunion, Detecting the tb decays of a charged Higgs boson at a hadron supercollider, Phys. Lett. B 322 (1994) 125 [hep-ph/9312201] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Arkani-Hamed et al., The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Kearney, A. Pierce and J. Thaler, Exotic top partners and little Higgs, arXiv:1306.4314 [INSPIRE].

  12. S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [INSPIRE].

    ADS  Google Scholar 

  13. S. Chang, ALittlest Higgsmodel with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Katz, J.-y. Lee, A.E. Nelson and D.G. Walker, A composite little Higgs model, JHEP 10 (2005) 088 [hep-ph/0312287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Thaler and I. Yavin, The littlest Higgs in Anti-de Sitter space, JHEP 08 (2005) 022 [hep-ph/0501036] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Schmaltz and J. Thaler, Collective quartics and dangerous singlets in little Higgs, JHEP 03 (2009) 137 [arXiv:0812.2477] [INSPIRE].

    Article  ADS  Google Scholar 

  18. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].

    Article  ADS  Google Scholar 

  19. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Bar-Shalom, M. Geller, S. Nandi and A. Soni, Two Higgs doublets, a 4th generation and a 125 GeV Higgs: a review, Adv. High Energy Phys. 2013 (2013) 672972 [arXiv:1208.3195] [INSPIRE].

    Google Scholar 

  21. M. Geller, S. Bar-Shalom, G. Eilam and A. Soni, The 125 GeV Higgs in the context of four generations with 2 Higgs doublets, Phys. Rev. D 86 (2012) 115008 [arXiv:1209.4081] [INSPIRE].

    ADS  Google Scholar 

  22. O. Deschamps et al., The two Higgs doublet of type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].

    ADS  Google Scholar 

  23. C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

    ADS  Google Scholar 

  24. S. Moretti and D. Roy, Detecting heavy charged Higgs bosons at the LHC with triple b tagging, Phys. Lett. B 470 (1999) 209 [hep-ph/9909435] [INSPIRE].

    Article  ADS  Google Scholar 

  25. K. Assamagan, The charged Higgs in hadronic decays with the ATLAS detector, Acta Phys. Polon. B 31 (2000) 863 [INSPIRE].

    ADS  Google Scholar 

  26. ATLAS collaboration, Calibrating the b-tag efficiency and mistag rate in 35pb −1 of data with the ATLAS detector, ATLAS-CONF-2011-089 (2011).

  27. ATLAS collaboration, ATLAS: detector and physics performance technical design report. Volume 1, CERN-LHCC-99-014 (1999)

  28. D. Miller, S. Moretti, D. Roy and W.J. Stirling, Detecting heavy charged Higgs bosons at the CERN LHC with four b quark tags, Phys. Rev. D 61 (2000) 055011 [hep-ph/9906230] [INSPIRE].

    ADS  Google Scholar 

  29. K.A. Assamagan and N. Gollub, The ATLAS discovery potential for a heavy charged Higgs boson in ggtbH ± with H ±tb, Eur. Phys. J. C 39S2 (2005) 25 [hep-ph/0406013] [INSPIRE].

    Article  ADS  Google Scholar 

  30. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  31. S. Yang and Q.-S. Yan, Searching for heavy charged Higgs boson with jet substructure at the LHC, JHEP 02 (2012) 074 [arXiv:1111.4530] [INSPIRE].

    Article  ADS  Google Scholar 

  32. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

    ADS  Google Scholar 

  33. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].

    ADS  Google Scholar 

  34. Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, Adv. High Energy Phys. 2013 (2013) 364936 [arXiv:1207.5607] [INSPIRE].

    Google Scholar 

  35. A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partners Hunter Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].

    Article  Google Scholar 

  36. ATLAS collaboration, Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 718 (2013) 1284 [arXiv:1210.5468] [INSPIRE].

    ADS  Google Scholar 

  37. CMS collaboration, Search for pair produced fourth-generation up-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with a lepton in the final state, Phys. Lett. B 718 (2012) 307 [arXiv:1209.0471] [INSPIRE].

    ADS  Google Scholar 

  38. D. Berenstein, T. Liu and E. Perkins, Multiple b-jets reveal natural SUSY and the 125 GeV Higgs, arXiv:1211.4288 [INSPIRE].

  39. K. Harigaya, S. Matsumoto, M.M. Nojiri and K. Tobioka, Search for the top partner at the LHC using multi-b-jet channels, Phys. Rev. D 86 (2012) 015005 [arXiv:1204.2317] [INSPIRE].

    ADS  Google Scholar 

  40. K. Rao and D. Whiteson, Triangulating an exotic T quark, Phys. Rev. D 86 (2012) 015008 [arXiv:1204.4504] [INSPIRE].

    ADS  Google Scholar 

  41. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Aliev et al., HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  47. J. de Favereau, X. Rouby and K. Piotrzkowski, Hector: a fast simulator for the transport of particles in beamlines, 2007 JINST 2 P09005 [arXiv:0707.1198] [INSPIRE].

    ADS  Google Scholar 

  48. L. Quertenmont and V. Roberfroid, FROG: the fast & realistic OPENGL displayer, arXiv:0901.2718 [INSPIRE].

  49. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  52. ATLAS collaboration, Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel, Phys. Lett. B 711 (2012) 244 [arXiv:1201.1889] [INSPIRE].

    ADS  Google Scholar 

  53. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

  54. C. Vayonakis, Born helicity amplitudes and cross-sections in nonabelian gauge theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].

    Article  Google Scholar 

  55. B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  56. M. Schmaltz, D. Stolarski and J. Thaler, The bestest little Higgs, JHEP 09 (2010) 018 [arXiv:1006.1356] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S. Godfrey, T. Gregoire, P. Kalyniak, T.A. Martin and K. Moats, Exploring the heavy quark sector of the bestest little Higgs model at the LHC, JHEP 04 (2012) 032 [arXiv:1201.1951] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kearney.

Additional information

ArXiv ePrint: 1304.4233

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kearney, J., Pierce, A. & Thaler, J. Top partner probes of extended Higgs sectors. J. High Energ. Phys. 2013, 130 (2013). https://doi.org/10.1007/JHEP08(2013)130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)130

Keywords

Navigation