Skip to main content
Log in

Finding viable models in SUSY parameter spaces with signal specific discovery potential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  2. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  4. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive and M. Srednicki, The CMSSM parameter space at large tan β, Phys. Lett. B 510 (2001) 236 [hep-ph/0102098] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A.H. Chamseddine, R. Arnowitt, and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Drees and M.M. Nojiri, The Neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].

  8. J.R. Ellis, T. Falk, K.A. Olive and M. Schmitt, Constraints on neutralino dark matter from LEP-2 and cosmology, Phys. Lett. B 413 (1997) 355 [hep-ph/9705444] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Lipniacka, Can SUSY be found at the Tevatron run II?, hep-ph/0112280 [INSPIRE].

  10. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].

    Article  ADS  Google Scholar 

  11. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].

    ADS  Google Scholar 

  12. M. Stoye, SUSY results from CMS, CMS-CR-2012-118 (2012).

  13. R. Bruneliere, Search for supersymmetry at ATLAS, ATL-PHYS-PROC-2012-073 (2012).

  14. O. Buchmueller et al., The CMSSM and NUHM1 in light of 7 TeV LHC, Bs to μ + μ - and XENON100 data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Fowlie et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].

    ADS  Google Scholar 

  16. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  17. J. Conway, PGS: Pretty Good Simulator, http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm.

  18. O. Buchmueller et al., The MasterCode project, http://mastercode.web.cern.ch/mastercode/index.php

  19. ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).

  20. A. Gelman, S. Brooks, G. Jones and X. Meng, Handbook of Markov chain Monte Carlo, Chapman & Hall/CRC Handbooks of Modern Statistical Methods, CRC Press, U.S.A. (2010).

  21. B. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline{p}p \) and e + e reactions, hep-ph/0312045 [INSPIRE].

  23. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Hagiwara et al., Review of particle physics, Phys. Rev. D 66 (2002) 010001 [INSPIRE].

    ADS  Google Scholar 

  27. DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [INSPIRE].

    Google Scholar 

  28. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  30. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ-lepton properties, arXiv:1010.1589 [INSPIRE].

  31. P. Gondolo et al., DarkSUSY darksusy-5.0.5, manual and short description of routines (June 2009).

  32. R. Aaij et al., First evidence for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), CERN-PH-EP-2012-335 (2012).

  33. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  34. ATLAS collaboration, Search for supersymmetry in events with large missing transverse momentum, jets and at least one tau lepton in 21 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data with the ATLAS detector, ATLAS-CONF-2013-026 (2013).

  35. D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated squark and gluino production to next-to-leading order, Phys. Rev. D 87 (2013) 014002 [arXiv:1211.0286] [INSPIRE].

    ADS  Google Scholar 

  36. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  37. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  38. B. Allanach and C. Lester, Multi-dimensional mSUGRA likelihood maps, Phys. Rev. D 73 (2006) 015013 [hep-ph/0507283] [INSPIRE].

    ADS  Google Scholar 

  39. S. Bodenstein, C. Dominguez, K. Schilcher and H. Spiesberger, Hadronic contribution to the muon g − 2 factor, arXiv:1302.1735 [INSPIRE].

  40. ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

    Article  ADS  Google Scholar 

  41. I. Niessen, Supersymmetric phenomenology in the mSUGRA parameter space, arXiv:0809.1748 [INSPIRE].

  42. W.K. Hastings, Monte Carlo sampling methods using markov chains and their applications, Biometrika 57 (1970) 97.

    Article  MATH  Google Scholar 

  43. R.V. Craiu and A. Fabio Di Narzo, A mixture-based approach to regional adaptation for MCMC, arXiv:0903.5292.

  44. B.C. Allanach and C.G. Lester, Sampling using a ‘bank’ of clues, Comput. Phys. Commun. 179 (2008) 256 [arXiv:0705.0486] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Y. Guan, R. Fleißner, P. Joyce and S.M. Krone, Markov chain Monte Carlo in small worlds, Stat. Comput. 16 (2006) 193.

    Article  MathSciNet  Google Scholar 

  46. M. West, Approximating posterior distributions by mixtures, J. Roy. Stat. Soc. B 55 (1993) 409.

    Google Scholar 

  47. G.O. Roberts, A. Gelman and W.R. Gilks, Weak convergence and optimal scaling of random walk metropolis algorithms, Ann. Appl. Probab. 7 (1997) 110.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. MacQueen, Some methods for classification and analysis of multivariate observations, in the proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, December 27{January 7, University of California, U.S.A. (1967).

  49. D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful seeding, Technical Report 2006-13, Stanford InfoLab (2006).

  50. G. Hamerly and C. Elkan, Learning the k in k-means, in Advances in neural information processing systems, S. Becker et al. eds., MIT Press, U.S.A. (2003).

    Google Scholar 

  51. M.A. Stephens, Edf statistics for goodness of fit and some comparisons, J. Amer. Stat. Assoc. 69 (1974) 730.

    Article  Google Scholar 

  52. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. Profumo, The quest for supersymmetry: early LHC results versus direct and indirect neutralino dark matter searches, Phys. Rev. D 84 (2011) 015008 [arXiv:1105.5162] [INSPIRE].

    ADS  Google Scholar 

  54. J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413-414] [hep-ph/9905481] [INSPIRE].

  55. H. Baer, E.-K. Park and X. Tata, Collider, direct and indirect detection of supersymmetric dark matter, New J. Phys. 11 (2009) 105024 [arXiv:0903.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  56. H. Baer et al., Exploring the BWCA (bino-wino co-annihilation) scenario for neutralino dark matter, JHEP 12 (2005) 011 [hep-ph/0511034] [INSPIRE].

    Article  ADS  Google Scholar 

  57. L. Roszkowski, R. Ruiz de Austri and T. Nihei, New cosmological and experimental constraints on the CMSSM, JHEP 08 (2001) 024 [hep-ph/0106334] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Øye Lindroos.

Additional information

ArXiv ePrint: 1210.7020

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgess, T., Lindroos, J.Ø., Lipniacka, A. et al. Finding viable models in SUSY parameter spaces with signal specific discovery potential. J. High Energ. Phys. 2013, 98 (2013). https://doi.org/10.1007/JHEP08(2013)098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)098

Keywords

Navigation