Advertisement

Higgs mass and vacuum stability in the Standard Model at NNLO

  • Giuseppe Degrassi
  • Stefano Di Vita
  • Joan Elias-Miró
  • José R. Espinosa
  • Gian F. Giudice
  • Gino Isidori
  • Alessandro Strumia
Open Access
Article

Abstract

We present the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential. We computed the two-loop QCD and Yukawa corrections to the relation between the Higgs quartic coupling (λ) and the Higgs mass (M h ), reducing the theoretical uncertainty in the determination of the critical value of M h for vacuum stability to 1 GeV. While λ at the Planck scale is remarkably close to zero, absolute stability of the Higgs potential is excluded at 98 % C.L. for M h < 126 GeV. Possible consequences of the near vanishing of λ at the Planck scale, including speculations about the role of the Higgs field during inflation, are discussed.

Keywords

Higgs Physics Standard Model Beyond Standard Model 

References

  1. [1]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \(\sqrt {s} = {7}\;TeV\) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt {s} = {7}\;TeV\), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P.Q. Hung, Vacuum instability and new constraints on fermion masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Schrempp and M. Wimmer, Top quark and Higgs boson masses: Interplay between infrared and ultraviolet physics, Prog. Part. Nucl. Phys. 37 (1996) 1 [hep-ph/9606386] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the standard model: An Update., Phys. Lett. B 337 (1994) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Burgess, V. Di Clemente and J. Espinosa, Effective operators and vacuum instability as heralds of new physics, JHEP 01 (2002) 041 [hep-ph/0201160] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Arkani-Hamed, S. Dubovsky, L. Senatore and G. Villadoro, (No) eternal inflation and precision Higgs physics, JHEP 03 (2008) 075 [arXiv:0801.2399] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Bezrukov and M. Shaposhnikov, Standard model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the standard model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, arXiv:1205.2893 [INSPIRE].
  22. [22]
    D. Bennett, H.B. Nielsen and I. Picek, Understanding fine structure constants and three generations, Phys. Lett. B 208 (1988) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Froggatt and H.B. Nielsen, Standard model criticality prediction: top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    I. Masina and A. Notari, The Higgs mass range from standard model false vacuum inflation in scalar-tensor gravity, Phys. Rev. D 85 (2012) 123506 [arXiv:1112.2659] [INSPIRE].ADSGoogle Scholar
  27. [27]
    I. Masina and A. Notari, Inflation from the Higgs field false vacuum with hybrid potential, arXiv:1204.4155 [INSPIRE].
  28. [28]
    C. Ford, I. Jack and D. Jones, The standard model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551-552] [hep-ph/0111190] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.P. Martin, Evaluation of two loop self energy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Sirlin and R. Zucchini, Dependence of the quartic coupling H(m) on M (h) and the possible onset of new physics in the Higgs sector of the standard model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Fleischer, M.Y. Kalmykov and A. Kotikov, Two loop self energy master integrals on-shell, Phys. Lett. B 462 (1999) 169 [hep-ph/9905249] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Bethke, The 2009 world average of α s, Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Tevatron Electroweak Working Group, CDF and D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].
  38. [38]
    CMS collaboration, Measurement of the top quark mass in the muon + jets channel, PAS-TOP-11-015 (2011).
  39. [39]
    ALTAS collaboration, Top quark mass measurements at the ATLAS experiment, PHYS-SLIDE-2012-106 (2012).
  40. [40]
    D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z 2 in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    K. Melnikov and T.v. Ritbergen, The three loop relation between the M S-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Hempfling and B.A. Kniehl, On the relation between the fermion pole mass and MS Yukawa coupling in the standard model, Phys. Rev. D 51 (1995) 1386 [hep-ph/9408313] [INSPIRE].ADSGoogle Scholar
  44. [44]
    F. Jegerlehner and M.Y. Kalmykov, O(αα s) correction to the pole mass of the t quark within the standard model, Nucl. Phys. B 676 (2004) 365 [hep-ph/0308216] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.H. Hoang and I.W. Stewart, Top mass measurements from jets and the Tevatron top-quark mass, Nucl. Phys. Proc. Suppl. 185 (2008) 220 [arXiv:0808.0222] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Fleming, A. H. Hoang, S. Mantry and I.W. Stewart, Vacuum instability and new constraints on fermion masses, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE]ADSGoogle Scholar
  47. [47]
    S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, arXiv:1207.0980 [INSPIRE].
  49. [49]
    M. Veltman, The infrared-ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].Google Scholar
  50. [50]
    F. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Burgess, H.M. Lee and M. Trott, Power-counting and the validity of the classical approximation during inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Barbon and J. Espinosa, On the naturalness of Higgs inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R.N. Lerner and J. McDonald, A unitarity-conserving Higgs inflation model, Phys. Rev. D 82 (2010) 103525 [arXiv:1005.2978] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G.F. Giudice and H.M. Lee, Unitarizing Higgs inflation, Phys. Lett. B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. De Simone, M.P. Hertzberg and F. Wilczek, Running inflation in the standard model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar
  64. [64]
    N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59 (1987) 381 [INSPIRE].
  67. [67]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Giuseppe Degrassi
    • 1
  • Stefano Di Vita
    • 1
  • Joan Elias-Miró
    • 2
  • José R. Espinosa
    • 2
    • 3
  • Gian F. Giudice
    • 4
  • Gino Isidori
    • 4
    • 5
  • Alessandro Strumia
    • 6
    • 7
  1. 1.Dipartimento di FisicaUniversità di Roma Tre and INFN — Sezione di Roma TreRomaItaly
  2. 2.IFAEUniversitat Autónoma de BarcelonaBarcelonaSpain
  3. 3.ICREA, Instituciò Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  4. 4.CERN, Theory DivisionGeneva 23Switzerland
  5. 5.INFN, Laboratori Nazionali di FrascatiFrascatiItaly
  6. 6.Dipartimento di FisicaUniversità di Pisa and INFN — Sezione di PisaPisaItaly
  7. 7.National Institute of Chemical Physics and BiophysicsTallinnEstonia

Personalised recommendations