Skip to main content

Higgs mass and vacuum stability in the Standard Model at NNLO

Abstract

We present the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential. We computed the two-loop QCD and Yukawa corrections to the relation between the Higgs quartic coupling (λ) and the Higgs mass (M h ), reducing the theoretical uncertainty in the determination of the critical value of M h for vacuum stability to 1 GeV. While λ at the Planck scale is remarkably close to zero, absolute stability of the Higgs potential is excluded at 98 % C.L. for M h < 126 GeV. Possible consequences of the near vanishing of λ at the Planck scale, including speculations about the role of the Higgs field during inflation, are discussed.

References

  1. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \(\sqrt {s} = {7}\;TeV\) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt {s} = {7}\;TeV\), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Article  Google Scholar 

  3. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].

    ADS  Article  Google Scholar 

  4. P.Q. Hung, Vacuum instability and new constraints on fermion masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].

    ADS  Article  Google Scholar 

  5. M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  6. M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    ADS  Article  Google Scholar 

  7. B. Schrempp and M. Wimmer, Top quark and Higgs boson masses: Interplay between infrared and ultraviolet physics, Prog. Part. Nucl. Phys. 37 (1996) 1 [hep-ph/9606386] [INSPIRE].

    ADS  Article  Google Scholar 

  8. G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the standard model: An Update., Phys. Lett. B 337 (1994) 141 [INSPIRE].

    ADS  Article  Google Scholar 

  9. J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].

    ADS  Article  Google Scholar 

  10. J. Casas, J. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].

    ADS  Article  Google Scholar 

  11. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    ADS  Article  Google Scholar 

  12. C. Burgess, V. Di Clemente and J. Espinosa, Effective operators and vacuum instability as heralds of new physics, JHEP 01 (2002) 041 [hep-ph/0201160] [INSPIRE].

    ADS  Article  Google Scholar 

  13. G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  14. N. Arkani-Hamed, S. Dubovsky, L. Senatore and G. Villadoro, (No) eternal inflation and precision Higgs physics, JHEP 03 (2008) 075 [arXiv:0801.2399] [INSPIRE].

    ADS  Article  Google Scholar 

  15. F. Bezrukov and M. Shaposhnikov, Standard model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    ADS  Article  Google Scholar 

  16. L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    ADS  Article  Google Scholar 

  17. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    ADS  Article  Google Scholar 

  18. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Article  Google Scholar 

  19. L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the standard model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].

    ADS  Article  Google Scholar 

  20. K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    ADS  Article  Google Scholar 

  21. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, arXiv:1205.2893 [INSPIRE].

  22. D. Bennett, H.B. Nielsen and I. Picek, Understanding fine structure constants and three generations, Phys. Lett. B 208 (1988) 275 [INSPIRE].

    ADS  Article  Google Scholar 

  23. C. Froggatt and H.B. Nielsen, Standard model criticality prediction: top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].

    ADS  Article  Google Scholar 

  24. M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    ADS  Article  Google Scholar 

  25. M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    ADS  Article  Google Scholar 

  26. I. Masina and A. Notari, The Higgs mass range from standard model false vacuum inflation in scalar-tensor gravity, Phys. Rev. D 85 (2012) 123506 [arXiv:1112.2659] [INSPIRE].

    ADS  Google Scholar 

  27. I. Masina and A. Notari, Inflation from the Higgs field false vacuum with hybrid potential, arXiv:1204.4155 [INSPIRE].

  28. C. Ford, I. Jack and D. Jones, The standard model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551-552] [hep-ph/0111190] [INSPIRE].

    ADS  Article  Google Scholar 

  29. S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].

    ADS  Google Scholar 

  30. S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].

    ADS  Google Scholar 

  31. S.P. Martin, Evaluation of two loop self energy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].

    ADS  Google Scholar 

  32. A. Sirlin and R. Zucchini, Dependence of the quartic coupling H(m) on M (h) and the possible onset of new physics in the Higgs sector of the standard model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].

    ADS  Article  Google Scholar 

  33. G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [INSPIRE].

    ADS  Article  Google Scholar 

  34. J. Fleischer, M.Y. Kalmykov and A. Kotikov, Two loop self energy master integrals on-shell, Phys. Lett. B 462 (1999) 169 [hep-ph/9905249] [INSPIRE].

    ADS  Article  Google Scholar 

  35. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Article  Google Scholar 

  36. S. Bethke, The 2009 world average of α s , Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    ADS  Article  Google Scholar 

  37. Tevatron Electroweak Working Group, CDF and D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  38. CMS collaboration, Measurement of the top quark mass in the muon + jets channel, PAS-TOP-11-015 (2011).

  39. ALTAS collaboration, Top quark mass measurements at the ATLAS experiment, PHYS-SLIDE-2012-106 (2012).

  40. D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z 2 in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. K. Melnikov and T.v. Ritbergen, The three loop relation between the M S-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].

    ADS  Article  Google Scholar 

  42. K. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].

    ADS  Article  Google Scholar 

  43. R. Hempfling and B.A. Kniehl, On the relation between the fermion pole mass and MS Yukawa coupling in the standard model, Phys. Rev. D 51 (1995) 1386 [hep-ph/9408313] [INSPIRE].

    ADS  Google Scholar 

  44. F. Jegerlehner and M.Y. Kalmykov, O(αα s ) correction to the pole mass of the t quark within the standard model, Nucl. Phys. B 676 (2004) 365 [hep-ph/0308216] [INSPIRE].

    ADS  Article  Google Scholar 

  45. A.H. Hoang and I.W. Stewart, Top mass measurements from jets and the Tevatron top-quark mass, Nucl. Phys. Proc. Suppl. 185 (2008) 220 [arXiv:0808.0222] [INSPIRE].

    ADS  Article  Google Scholar 

  46. S. Fleming, A. H. Hoang, S. Mantry and I.W. Stewart, Vacuum instability and new constraints on fermion masses, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE]

    ADS  Google Scholar 

  47. S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].

    ADS  Article  Google Scholar 

  48. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, arXiv:1207.0980 [INSPIRE].

  49. M. Veltman, The infrared-ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].

    Google Scholar 

  50. F. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    ADS  Article  Google Scholar 

  51. C. Burgess, H.M. Lee and M. Trott, Power-counting and the validity of the classical approximation during inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

    ADS  Article  Google Scholar 

  52. J. Barbon and J. Espinosa, On the naturalness of Higgs inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].

    ADS  Google Scholar 

  53. R.N. Lerner and J. McDonald, A unitarity-conserving Higgs inflation model, Phys. Rev. D 82 (2010) 103525 [arXiv:1005.2978] [INSPIRE].

    ADS  Google Scholar 

  54. G.F. Giudice and H.M. Lee, Unitarizing Higgs inflation, Phys. Lett. B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].

    ADS  Article  Google Scholar 

  55. A. De Simone, M.P. Hertzberg and F. Wilczek, Running inflation in the standard model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].

    ADS  Article  Google Scholar 

  56. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  57. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    ADS  Article  Google Scholar 

  58. M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    ADS  Article  Google Scholar 

  59. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Article  Google Scholar 

  60. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

    ADS  Article  Google Scholar 

  61. N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  62. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    ADS  Article  Google Scholar 

  63. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  64. N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    ADS  Article  Google Scholar 

  65. G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].

    ADS  Article  Google Scholar 

  66. Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59 (1987) 381 [INSPIRE].

  67. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Isidori.

Additional information

ArXiv ePrint: 1205.6497

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Degrassi, G., Di Vita, S., Elias-Miró, J. et al. Higgs mass and vacuum stability in the Standard Model at NNLO. J. High Energ. Phys. 2012, 98 (2012). https://doi.org/10.1007/JHEP08(2012)098

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)098

Keywords

  • Higgs Physics
  • Standard Model
  • Beyond Standard Model