Skip to main content
Log in

Flux and instanton effects in local F-theory models and hierarchical fermion masses

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the deformation induced by fluxes and instanton effects on Yukawa couplings involving 7-brane intersections in local F-theory constructions. In the absence of non-perturbative effects, holomorphic Yukawa couplings do not depend on open string fluxes. On the other hand instanton effects (or gaugino condensation on distant 7-branes) do induce corrections to the Yukawas. The leading order effect may also be captured by the presence of closed string (1,2) IASD fluxes, which give rise to a non-commutative structure. We check that even in the presence of these non-perturbative effects the holomorphic Yukawas remain independent of magnetic fluxes. Although fermion mass hierarchies may be obtained from these non-perturbative effects, they would give identical Yukawa couplings for D-quark and Lepton masses in SU(5) F-theory GUT’s, in contradiction with experiment. We point out that this problem may be solved by appropriately normalizing the wavefunctions. We show in a simple toy model how the presence of hypercharge flux may then be responsible for the difference between D-quarks and Lepton masses in local SU(5) GUT’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Ibáñez and A.M. Uranga, String Theory and Particle Physics. An Introduction to String Phenomenology, Cambridge University Press (2011), to appear.

  2. F. Marchesano and G. Shiu, MSSM vacua from flux compactifications, Phys. Rev. D 71 (2005) 011701 [hep-th/0408059] [SPIRES].

    ADS  Google Scholar 

  3. F. Marchesano and G. Shiu, Building MSSM flux vacua, JHEP 11 (2004) 041 [hep-th/0409132] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Cremades, L.E. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [SPIRES].

    Article  ADS  Google Scholar 

  5. S.A. Abel and M.D. Goodsell, Realistic Yukawa couplings through instantons in intersecting brane worlds, JHEP 10 (2007) 034 [hep-th/0612110] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [SPIRES].

  7. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory — II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, arXiv:0808.2223 [SPIRES].

  10. J.J. Heckman, Particle Physics Implications of F-theory, arXiv:1001.0577 [SPIRES].

  11. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Font and L.E. Ibáñez, Yukawa Structure from U(1) Fluxes in F-theory Grand Unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].

    Article  ADS  Google Scholar 

  13. J.J. Heckman and C. Vafa, Flavor Hierarchy From F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 Singularities and Yukawa Couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Font and L.E. Ibáñez, Matter wave functions and Yukawa couplings in F-theory Grand Unification, JHEP 09 (2009) 036 [arXiv:0907.4895] [SPIRES].

    Article  ADS  Google Scholar 

  16. S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa Couplings in F-theory and Non-Commutative Geometry, arXiv:0910.0477 [SPIRES].

  17. J.P. Conlon and E. Palti, Aspects of Flavour and Supersymmetry in F-theory GUTs, JHEP 01 (2010) 029 [arXiv:0910.2413] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor Structure in F-theory Compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: A bottom-up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [SPIRES].

    Article  ADS  Google Scholar 

  20. E. Dudas and E. Palti, Froggatt-Nielsen models from E8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. G.K. Leontaris and G.G. Ross, Yukawa couplings and fermion mass structure in F-theory GUTs, JHEP 02 (2011) 108 [arXiv:1009.6000] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Krippendorf, M.J. Dolan, A. Maharana and F. Quevedo, D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics, JHEP 06 (2010) 092 [arXiv:1002.1790] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [SPIRES].

    Article  ADS  Google Scholar 

  24. D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane Potentials from Fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Collinucci, New F-theory lifts II: Permutation orientifolds and enhanced singularities, JHEP 04 (2010) 076 [arXiv:0906.0003] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, F-theory uplifts and GUTs, JHEP 09 (2009) 053 [arXiv:0906.0013] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, Fluxes and Compact Three-Generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [SPIRES].

    Article  ADS  Google Scholar 

  30. C. Cordova, Decoupling Gravity in F-theory, arXiv:0910.2955 [SPIRES].

  31. J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1)PQ, JHEP 04 (2010) 095 [arXiv:0912.0272] [SPIRES].

    Article  ADS  Google Scholar 

  32. T.W. Grimm, S. Krause and T. Weigand, F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. T.W. Grimm, The N = 1 effective action of F-theory compactifications, Nucl. Phys. B 845 (2011) 48 [arXiv:1008.4133] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Abe, T. Kobayashi and H. Ohki, Magnetized orbifold models, JHEP 09 (2008) 043 [arXiv:0806.4748] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Three generation magnetized orbifold models, Nucl. Phys. B 814 (2009) 265 [arXiv:0812.3534] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. J.P. Conlon, A. Maharana and F. Quevedo, Wave Functions and Yukawa Couplings in Local String Compactifications, JHEP 09 (2008) 104 [arXiv:0807.0789] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Di Vecchia, A. Liccardo, R. Marotta and F. Pezzella, Kähler Metrics and Yukawa Couplings in Magnetized Brane Models, JHEP 03 (2009) 029 [arXiv:0810.5509] [SPIRES].

    Article  Google Scholar 

  39. P.G. Camara and F. Marchesano, Open string wavefunctions in flux compactifications, JHEP 10 (2009) 017 [arXiv:0906.3033] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  40. P.G. Camara and F. Marchesano, Physics from open string wavefunctions, PoS(EPS-HEP 2009)390 [SPIRES].

  41. F. Marchesano, P. McGuirk and G. Shiu, Chiral matter wavefunctions in warped compactifications, JHEP 05 (2011) 090 [arXiv:1012.2759] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Cremades, L.E. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [SPIRES].

    Article  ADS  Google Scholar 

  43. R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].

    Article  ADS  Google Scholar 

  44. A. Font and F. Quevedo, N = 1 Supersymmetric truncations and the superstring low-energy effective theory, Phys. Lett. B 184 (1987) 45 [SPIRES].

    ADS  Google Scholar 

  45. A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric deformations, JHEP 04 (2011) 061 [arXiv:1012.4018] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Graña and J. Polchinski, Supersymmetric three-form flux perturbations on AdS 5, Phys. Rev. D 63 (2001) 026001 [hep-th/0009211] [SPIRES].

    ADS  Google Scholar 

  47. B. Heidenreich, L. McAllister and G. Torroba, Dynamic SU(2) Structure from Seven-branes, JHEP 05 (2011) 110 [arXiv:1011.3510] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  48. L. Martucci, D-branes on general N = 1 backgrounds: Superpotentials and D-terms, JHEP 06 (2006) 033 [hep-th/0602129] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [SPIRES].

    ADS  Google Scholar 

  50. J.R. Ellis and M.K. Gaillard, Fermion Masses and Higgs Representations in SU(5), Phys. Lett. B 88 (1979) 315 [SPIRES].

    ADS  Google Scholar 

  51. J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  52. L. Aparicio, D.G. Cerdeño and L.E. Ibáñez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [SPIRES].

    Article  ADS  Google Scholar 

  53. H. Fritzsch and Z.-z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys. 45 (2000) 1 [hep-ph/9912358] [SPIRES].

    Article  ADS  Google Scholar 

  54. Particle Data Group collaboration, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1.

    ADS  Google Scholar 

  55. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [SPIRES].

  57. I. Brunner, M.R. Douglas, A.E. Lawrence and C. Romelsberger, D-branes on the quintic, JHEP 08 (2000) 015 [hep-th/9906200] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Bertolini, M. Billó, A. Lerda, J.F. Morales and R. Russo, Brane world effective actions for D-branes with fluxes, Nucl. Phys. B 743 (2006) 1 [hep-th/0512067] [SPIRES].

    Article  ADS  Google Scholar 

  59. I. Antoniadis, A. Kumar and B. Panda, Fermion Wavefunctions in Magnetized branes: Theta identities and Yukawa couplings, Nucl. Phys. B 823 (2009) 116 [arXiv:0904.0910] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  60. P.G. Cámara, C. Condeescu and E. Dudas, Holomorphic variables in magnetized brane models with continuous Wilson lines, JHEP 04 (2010) 029 [arXiv:0912.3369] [SPIRES].

    Article  Google Scholar 

  61. A. Kapustin, Topological strings on noncommutative manifolds, Int. J. Geom. Meth. Mod. Phys. 1 (2004) 49 [hep-th/0310057] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  62. V. Pestun, Topological strings in generalized complex space, Adv. Theor. Math. Phys. 11 (2007) 399 [hep-th/0603145] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  63. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marchesano.

Additional information

ArXiv ePrint: 1104.2609

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, L., Font, A., Ibáñez, L.E. et al. Flux and instanton effects in local F-theory models and hierarchical fermion masses. J. High Energ. Phys. 2011, 152 (2011). https://doi.org/10.1007/JHEP08(2011)152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)152

Keywords

Navigation