Abstract
Thermal partition functions for gravitational systems have traditionally been studied using Euclidean path integrals. But in Euclidean signature the gravitational action suffers from the conformal factor problem, which renders the action unbounded below. This makes it difficult to take the Euclidean formulation as fundamental. However, despite their familiar association with periodic imaginary time, thermal gravitational partition functions can also be described by real-time path integrals over contours defined by real Lorentzian metrics. The one caveat is that we should allow certain codimension-2 singularities analogous to the familiar Euclidean conical singularities. With this understanding, we show that the usual Euclidean-signature black holes (or their complex rotating analogues) define saddle points for the real-time path integrals that compute our partition functions. Furthermore, when the black holes have positive specific heat, we provide evidence that a codimension-2 subcontour of our real Lorentz-signature contour of integration can be deformed so as to show that these black holes saddles contribute with non-zero weight to the semiclassical limit, and that the same is then true of the remaining two integrals.
References
G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].
G.W. Gibbons, S.W. Hawking and M.J. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].
B. Allen, Euclidean Schwarzschild negative mode, Phys. Rev. D 30 (1984) 1153 [INSPIRE].
T. Prestidge, Dynamic and thermodynamic stability and negative modes in Schwarzschild-anti-de Sitter, Phys. Rev. D 61 (2000) 084002 [hep-th/9907163] [INSPIRE].
B. Kol, The Power of Action: The Derivation of the Black Hole Negative Mode, Phys. Rev. D 77 (2008) 044039 [hep-th/0608001] [INSPIRE].
M. Headrick and T. Wiseman, Ricci flow and black holes, Class. Quant. Grav. 23 (2006) 6683 [hep-th/0606086] [INSPIRE].
R. Monteiro and J.E. Santos, Negative modes and the thermodynamics of Reissner-Nordstrom black holes, Phys. Rev. D 79 (2009) 064006 [arXiv:0812.1767] [INSPIRE].
R. Monteiro, M.J. Perry and J.E. Santos, Thermodynamic instability of rotating black holes, Phys. Rev. D 80 (2009) 024041 [arXiv:0903.3256] [INSPIRE].
R. Monteiro, M.J. Perry and J.E. Santos, Semiclassical instabilities of Kerr-AdS black holes, Phys. Rev. D 81 (2010) 024001 [arXiv:0905.2334] [INSPIRE].
D. Anninos, F. Denef and D. Harlow, Wave function of Vasiliev’s universe: A few slices thereof, Phys. Rev. D 88 (2013) 084049 [arXiv:1207.5517] [INSPIRE].
N. Benjamin, S. Collier and A. Maloney, Pure Gravity and Conical Defects, JHEP 09 (2020) 034 [arXiv:2004.14428] [INSPIRE].
J. Cotler, K. Jensen and A. Maloney, Low-dimensional de Sitter quantum gravity, JHEP 06 (2020) 048 [arXiv:1905.03780] [INSPIRE].
D. Marolf, Microcanonical Path Integrals and the Holography of small Black Hole Interiors, JHEP 09 (2018) 114 [arXiv:1808.00394] [INSPIRE].
J. Cotler and K. Jensen, Wormholes and black hole microstates in AdS/CFT, JHEP 09 (2021) 001 [arXiv:2104.00601] [INSPIRE].
J.B. Hartle and K. Schleich, The Conformal Rotation in Linearised Gravity, arXiv:2004.06635 [INSPIRE].
K. Schleich, Conformal Rotation in Perturbative Gravity, Phys. Rev. D 36 (1987) 2342 [INSPIRE].
P.O. Mazur and E. Mottola, The Gravitational Measure, Solution of the Conformal Factor Problem and Stability of the Ground State of Quantum Gravity, Nucl. Phys. B 341 (1990) 187 [INSPIRE].
S.B. Giddings, The Conformal Factor and the Cosmological Constant, Int. J. Mod. Phys. A 5 (1990) 3811 [INSPIRE].
S.B. Giddings, Wormholes, the conformal factor, and the cosmological constant, in Proceedings of the International Colloquium on Modern Quantum Field Theory, Shamita Das ed., World Scientific, Singapore (1990) [ISBN-13: 978-9810201999].
D. Marolf, Path integrals and instantons in quantum gravity: Minisuperspace models, Phys. Rev. D 53 (1996) 6979 [gr-qc/9602019] [INSPIRE].
A. Dasgupta and R. Loll, A Proper time cure for the conformal sickness in quantum gravity, Nucl. Phys. B 606 (2001) 357 [hep-th/0103186] [INSPIRE].
J. Ambjørn, A. Dasgupta, J. Jurkiewicz and R. Loll, A Lorentzian cure for Euclidean troubles, Nucl. Phys. B Proc. Suppl. 106 (2002) 977 [hep-th/0201104] [INSPIRE].
J. Feldbrugge, J.-L. Lehners and N. Turok, Lorentzian Quantum Cosmology, Phys. Rev. D 95 (2017) 103508 [arXiv:1703.02076] [INSPIRE].
J. Feldbrugge, J.-L. Lehners and N. Turok, No smooth beginning for spacetime, Phys. Rev. Lett. 119 (2017) 171301 [arXiv:1705.00192] [INSPIRE].
J. Feldbrugge, J.-L. Lehners and N. Turok, No rescue for the no boundary proposal: Pointers to the future of quantum cosmology, Phys. Rev. D 97 (2018) 023509 [arXiv:1708.05104] [INSPIRE].
J. Louko and R.D. Sorkin, Complex actions in two-dimensional topology change, Class. Quant. Grav. 14 (1997) 179 [gr-qc/9511023] [INSPIRE].
Y. Neiman, The imaginary part of the gravity action and black hole entropy, JHEP 04 (2013) 071 [arXiv:1301.7041] [INSPIRE].
S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational replicas: Formalism and a variational principle, JHEP 05 (2021) 117 [arXiv:2012.00828] [INSPIRE].
S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational replicas: low dimensional examples, JHEP 08 (2021) 171 [arXiv:2105.07002] [INSPIRE].
X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].
X. Dong and D. Marolf, One-loop universality of holographic codes, JHEP 03 (2020) 191 [arXiv:1910.06329] [INSPIRE].
D. Marolf and H. Maxfield, Observations of Hawking radiation: the Page curve and baby universes, JHEP 04 (2021) 272 [arXiv:2010.06602] [INSPIRE].
D. Marolf and H. Maxfield, The page curve and baby universes, Int. J. Mod. Phys. D 30 (2021) 2142027 [arXiv:2105.12211] [INSPIRE].
X. Dong, D. Marolf and P. Rath, Geometric entropies and their geometric flow: the power of Lorentzian methods, to appear (2022).
M.V. Fedorjuk, The asymptotics of the fourier transform of the exponential function of a polynomial, Sov. Math. Dokl. 17 (1976) 486.
F. Pham, Vanishing homologies and the n variable saddlepoint method, Proc. Symp. Pure Math. 40 (1983) 319.
S.M.G.-Z.V.I. Arnold and A.N. Varchenko, Singularities Of Differentiable Maps, Vol. 2, Birkhauser, Boston, MA, U.S.A. (1988) [DOI].
M.V. Berry and C.J. Howls, Hyperasymptotics, Proc. Roy. Soc. Lond. A 430 (1990) 653.
M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. Lond. A 434 (1991) 657.
C.J. Howls, Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem, Proc. Roy. Soc. Lond. A 453 (1997) 2271.
E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].
M.T. Anderson, On boundary value problems for einstein metrics, Geom. Topol. 12 (2008) 2009.
M.T. Anderson, Extension of symmetries on Einstein manifolds with boundary, arXiv:0704.3373 [INSPIRE].
E. Witten, A note on boundary conditions in Euclidean gravity, Rev. Math. Phys. 33 (2021) 2140004 [arXiv:1805.11559] [INSPIRE].
G. Fournodavlos and J. Smulevici, The Initial Boundary Value Problem for the Einstein Equations with Totally Geodesic Timelike Boundary, Commun. Math. Phys. 385 (2021) 1615 [arXiv:2006.01498] [INSPIRE].
G. Fournodavlos and J. Smulevici, The initial boundary value problem in General Relativity: the umbilic case, arXiv:2104.08851 [INSPIRE].
T. Andrade, W.R. Kelly and D. Marolf, Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes, Class. Quant. Grav. 32 (2015) 195017 [arXiv:1503.03915] [INSPIRE].
L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, JHEP 02 (2020) 177 [arXiv:1804.01081] [INSPIRE].
D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044 [arXiv:2002.08950] [INSPIRE].
S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].
G.T. Horowitz and J.E. Santos, Geons and the Instability of Anti-de Sitter Spacetime, Surveys Diff. Geom. 20 (2015) 321 [arXiv:1408.5906] [INSPIRE].
S. Carlip and C. Teitelboim, The Off-shell black hole, Class. Quant. Grav. 12 (1995) 1699 [gr-qc/9312002] [INSPIRE].
R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].
A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].
J.D. Brown, E.A. Martinez and J.W. York Jr., Complex Kerr-Newman geometry and black hole thermodynamics, Phys. Rev. Lett. 66 (1991) 2281 [INSPIRE].
J.D. Brown, E.A. Martinez and J.W. York Jr., Rotating black holes, complex geometry, and thermodynamics, Annals N.Y. Acad. Sci. 631 (1991) 225.
G.W. Gibbons and S.W. Hawking, Classification of Gravitational Instanton Symmetries, Commun. Math. Phys. 66 (1979) 291 [INSPIRE].
S. Hawking, General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge, U.K. (1979).
D. Marolf and J.E. Santos, Stability of the microcanonical ensemble in Euclidean Quantum Gravity, arXiv:2202.12360 [INSPIRE].
D. Marolf and J.E. Santos, The Canonical Ensemble Reloaded: The Complex-Stability of Euclidean quantum gravity for Black Holes in a Box, arXiv:2202.11786 [INSPIRE].
S.W. Hawking, G.T. Horowitz and S.F. Ross, Entropy, Area, and black hole pairs, Phys. Rev. D 51 (1995) 4302 [gr-qc/9409013] [INSPIRE].
G.T. Horowitz, The Origin of black hole entropy in string theory, Astrophys. Space Sci. Libr. 211 (1997) 46 [gr-qc/9604051] [INSPIRE].
R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
J. Cotler and K. Jensen, Gravitational Constrained Instantons, Phys. Rev. D 104 (2021) 081501 [arXiv:2010.02241] [INSPIRE].
R. Bousso and S.W. Hawking, Primordial black holes: Pair creation, Lorentzian condition, and evaporation, Int. J. Theor. Phys. 38 (1999) 1227 [INSPIRE].
P. Draper and S. Farkas, de Sitter black holes as constrained states in the Euclidean path integral, Phys. Rev. D 105 (2022) 126022 [arXiv:2203.02426] [INSPIRE].
P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
J. Held, D. Marolf, X. Liu and Z. Wang, Deforming the Lorentzian Path Integral Contour to Access Complex Renyi Saddles in JT Gravity, to appear (2022).
J. Diaz Dorronsoro, J.J. Halliwell, J.B. Hartle, T. Hertog and O. Janssen, Real no-boundary wave function in Lorentzian quantum cosmology, Phys. Rev. D 96 (2017) 043505 [arXiv:1705.05340] [INSPIRE].
J. Brown, A. Cole, G. Shiu and W. Cottrell, Gravitational decoupling and the Picard-Lefschetz approach, Phys. Rev. D 97 (2018) 025002 [arXiv:1710.04737] [INSPIRE].
G.J. Loges, G. Shiu and N. Sudhir, Complex Saddles and Euclidean Wormholes in the Lorentzian Path Integral, arXiv:2203.01956 [INSPIRE].
J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2203.07421
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Marolf, D. Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals. J. High Energ. Phys. 2022, 108 (2022). https://doi.org/10.1007/JHEP07(2022)108
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2022)108
Keywords
- Black Holes
- Spacetime Singularities