Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 18 July 2022
  • volume 2022, Article number: 108 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals
Download PDF
  • Donald Marolf  ORCID: orcid.org/0000-0002-4560-49971 
  • 211 Accesses

  • 4 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Thermal partition functions for gravitational systems have traditionally been studied using Euclidean path integrals. But in Euclidean signature the gravitational action suffers from the conformal factor problem, which renders the action unbounded below. This makes it difficult to take the Euclidean formulation as fundamental. However, despite their familiar association with periodic imaginary time, thermal gravitational partition functions can also be described by real-time path integrals over contours defined by real Lorentzian metrics. The one caveat is that we should allow certain codimension-2 singularities analogous to the familiar Euclidean conical singularities. With this understanding, we show that the usual Euclidean-signature black holes (or their complex rotating analogues) define saddle points for the real-time path integrals that compute our partition functions. Furthermore, when the black holes have positive specific heat, we provide evidence that a codimension-2 subcontour of our real Lorentz-signature contour of integration can be deformed so as to show that these black holes saddles contribute with non-zero weight to the semiclassical limit, and that the same is then true of the remaining two integrals.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

  2. G.W. Gibbons, S.W. Hawking and M.J. Perry, Path Integrals and the Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].

  3. B. Allen, Euclidean Schwarzschild negative mode, Phys. Rev. D 30 (1984) 1153 [INSPIRE].

  4. T. Prestidge, Dynamic and thermodynamic stability and negative modes in Schwarzschild-anti-de Sitter, Phys. Rev. D 61 (2000) 084002 [hep-th/9907163] [INSPIRE].

  5. B. Kol, The Power of Action: The Derivation of the Black Hole Negative Mode, Phys. Rev. D 77 (2008) 044039 [hep-th/0608001] [INSPIRE].

  6. M. Headrick and T. Wiseman, Ricci flow and black holes, Class. Quant. Grav. 23 (2006) 6683 [hep-th/0606086] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Monteiro and J.E. Santos, Negative modes and the thermodynamics of Reissner-Nordstrom black holes, Phys. Rev. D 79 (2009) 064006 [arXiv:0812.1767] [INSPIRE].

  8. R. Monteiro, M.J. Perry and J.E. Santos, Thermodynamic instability of rotating black holes, Phys. Rev. D 80 (2009) 024041 [arXiv:0903.3256] [INSPIRE].

  9. R. Monteiro, M.J. Perry and J.E. Santos, Semiclassical instabilities of Kerr-AdS black holes, Phys. Rev. D 81 (2010) 024001 [arXiv:0905.2334] [INSPIRE].

  10. D. Anninos, F. Denef and D. Harlow, Wave function of Vasiliev’s universe: A few slices thereof, Phys. Rev. D 88 (2013) 084049 [arXiv:1207.5517] [INSPIRE].

  11. N. Benjamin, S. Collier and A. Maloney, Pure Gravity and Conical Defects, JHEP 09 (2020) 034 [arXiv:2004.14428] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Cotler, K. Jensen and A. Maloney, Low-dimensional de Sitter quantum gravity, JHEP 06 (2020) 048 [arXiv:1905.03780] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Marolf, Microcanonical Path Integrals and the Holography of small Black Hole Interiors, JHEP 09 (2018) 114 [arXiv:1808.00394] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Cotler and K. Jensen, Wormholes and black hole microstates in AdS/CFT, JHEP 09 (2021) 001 [arXiv:2104.00601] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  15. J.B. Hartle and K. Schleich, The Conformal Rotation in Linearised Gravity, arXiv:2004.06635 [INSPIRE].

  16. K. Schleich, Conformal Rotation in Perturbative Gravity, Phys. Rev. D 36 (1987) 2342 [INSPIRE].

  17. P.O. Mazur and E. Mottola, The Gravitational Measure, Solution of the Conformal Factor Problem and Stability of the Ground State of Quantum Gravity, Nucl. Phys. B 341 (1990) 187 [INSPIRE].

  18. S.B. Giddings, The Conformal Factor and the Cosmological Constant, Int. J. Mod. Phys. A 5 (1990) 3811 [INSPIRE].

  19. S.B. Giddings, Wormholes, the conformal factor, and the cosmological constant, in Proceedings of the International Colloquium on Modern Quantum Field Theory, Shamita Das ed., World Scientific, Singapore (1990) [ISBN-13: 978-9810201999].

  20. D. Marolf, Path integrals and instantons in quantum gravity: Minisuperspace models, Phys. Rev. D 53 (1996) 6979 [gr-qc/9602019] [INSPIRE].

  21. A. Dasgupta and R. Loll, A Proper time cure for the conformal sickness in quantum gravity, Nucl. Phys. B 606 (2001) 357 [hep-th/0103186] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Ambjørn, A. Dasgupta, J. Jurkiewicz and R. Loll, A Lorentzian cure for Euclidean troubles, Nucl. Phys. B Proc. Suppl. 106 (2002) 977 [hep-th/0201104] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Feldbrugge, J.-L. Lehners and N. Turok, Lorentzian Quantum Cosmology, Phys. Rev. D 95 (2017) 103508 [arXiv:1703.02076] [INSPIRE].

  24. J. Feldbrugge, J.-L. Lehners and N. Turok, No smooth beginning for spacetime, Phys. Rev. Lett. 119 (2017) 171301 [arXiv:1705.00192] [INSPIRE].

  25. J. Feldbrugge, J.-L. Lehners and N. Turok, No rescue for the no boundary proposal: Pointers to the future of quantum cosmology, Phys. Rev. D 97 (2018) 023509 [arXiv:1708.05104] [INSPIRE].

  26. J. Louko and R.D. Sorkin, Complex actions in two-dimensional topology change, Class. Quant. Grav. 14 (1997) 179 [gr-qc/9511023] [INSPIRE].

  27. Y. Neiman, The imaginary part of the gravity action and black hole entropy, JHEP 04 (2013) 071 [arXiv:1301.7041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational replicas: Formalism and a variational principle, JHEP 05 (2021) 117 [arXiv:2012.00828] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational replicas: low dimensional examples, JHEP 08 (2021) 171 [arXiv:2105.07002] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  30. X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].

    Article  ADS  Google Scholar 

  31. X. Dong and D. Marolf, One-loop universality of holographic codes, JHEP 03 (2020) 191 [arXiv:1910.06329] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. D. Marolf and H. Maxfield, Observations of Hawking radiation: the Page curve and baby universes, JHEP 04 (2021) 272 [arXiv:2010.06602] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Marolf and H. Maxfield, The page curve and baby universes, Int. J. Mod. Phys. D 30 (2021) 2142027 [arXiv:2105.12211] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. X. Dong, D. Marolf and P. Rath, Geometric entropies and their geometric flow: the power of Lorentzian methods, to appear (2022).

  35. M.V. Fedorjuk, The asymptotics of the fourier transform of the exponential function of a polynomial, Sov. Math. Dokl. 17 (1976) 486.

    MATH  Google Scholar 

  36. F. Pham, Vanishing homologies and the n variable saddlepoint method, Proc. Symp. Pure Math. 40 (1983) 319.

    Article  MathSciNet  Google Scholar 

  37. S.M.G.-Z.V.I. Arnold and A.N. Varchenko, Singularities Of Differentiable Maps, Vol. 2, Birkhauser, Boston, MA, U.S.A. (1988) [DOI].

  38. M.V. Berry and C.J. Howls, Hyperasymptotics, Proc. Roy. Soc. Lond. A 430 (1990) 653.

    Article  ADS  MathSciNet  Google Scholar 

  39. M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. Lond. A 434 (1991) 657.

    Article  ADS  MathSciNet  Google Scholar 

  40. C.J. Howls, Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem, Proc. Roy. Soc. Lond. A 453 (1997) 2271.

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  42. M.T. Anderson, On boundary value problems for einstein metrics, Geom. Topol. 12 (2008) 2009.

    Article  MathSciNet  Google Scholar 

  43. M.T. Anderson, Extension of symmetries on Einstein manifolds with boundary, arXiv:0704.3373 [INSPIRE].

  44. E. Witten, A note on boundary conditions in Euclidean gravity, Rev. Math. Phys. 33 (2021) 2140004 [arXiv:1805.11559] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  45. G. Fournodavlos and J. Smulevici, The Initial Boundary Value Problem for the Einstein Equations with Totally Geodesic Timelike Boundary, Commun. Math. Phys. 385 (2021) 1615 [arXiv:2006.01498] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. G. Fournodavlos and J. Smulevici, The initial boundary value problem in General Relativity: the umbilic case, arXiv:2104.08851 [INSPIRE].

  47. T. Andrade, W.R. Kelly and D. Marolf, Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes, Class. Quant. Grav. 32 (2015) 195017 [arXiv:1503.03915] [INSPIRE].

  48. L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].

  49. D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, JHEP 02 (2020) 177 [arXiv:1804.01081] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044 [arXiv:2002.08950] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

  52. G.T. Horowitz and J.E. Santos, Geons and the Instability of Anti-de Sitter Spacetime, Surveys Diff. Geom. 20 (2015) 321 [arXiv:1408.5906] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. S. Carlip and C. Teitelboim, The Off-shell black hole, Class. Quant. Grav. 12 (1995) 1699 [gr-qc/9312002] [INSPIRE].

  54. R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].

  55. A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. J.D. Brown, E.A. Martinez and J.W. York Jr., Complex Kerr-Newman geometry and black hole thermodynamics, Phys. Rev. Lett. 66 (1991) 2281 [INSPIRE].

  57. J.D. Brown, E.A. Martinez and J.W. York Jr., Rotating black holes, complex geometry, and thermodynamics, Annals N.Y. Acad. Sci. 631 (1991) 225.

    Article  ADS  MathSciNet  Google Scholar 

  58. G.W. Gibbons and S.W. Hawking, Classification of Gravitational Instanton Symmetries, Commun. Math. Phys. 66 (1979) 291 [INSPIRE].

  59. S. Hawking, General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge, U.K. (1979).

    MATH  Google Scholar 

  60. D. Marolf and J.E. Santos, Stability of the microcanonical ensemble in Euclidean Quantum Gravity, arXiv:2202.12360 [INSPIRE].

  61. D. Marolf and J.E. Santos, The Canonical Ensemble Reloaded: The Complex-Stability of Euclidean quantum gravity for Black Holes in a Box, arXiv:2202.11786 [INSPIRE].

  62. S.W. Hawking, G.T. Horowitz and S.F. Ross, Entropy, Area, and black hole pairs, Phys. Rev. D 51 (1995) 4302 [gr-qc/9409013] [INSPIRE].

  63. G.T. Horowitz, The Origin of black hole entropy in string theory, Astrophys. Space Sci. Libr. 211 (1997) 46 [gr-qc/9604051] [INSPIRE].

  64. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].

  65. J. Cotler and K. Jensen, Gravitational Constrained Instantons, Phys. Rev. D 104 (2021) 081501 [arXiv:2010.02241] [INSPIRE].

  66. R. Bousso and S.W. Hawking, Primordial black holes: Pair creation, Lorentzian condition, and evaporation, Int. J. Theor. Phys. 38 (1999) 1227 [INSPIRE].

  67. P. Draper and S. Farkas, de Sitter black holes as constrained states in the Euclidean path integral, Phys. Rev. D 105 (2022) 126022 [arXiv:2203.02426] [INSPIRE].

  68. P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].

  69. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

  70. C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

  71. J. Held, D. Marolf, X. Liu and Z. Wang, Deforming the Lorentzian Path Integral Contour to Access Complex Renyi Saddles in JT Gravity, to appear (2022).

  72. J. Diaz Dorronsoro, J.J. Halliwell, J.B. Hartle, T. Hertog and O. Janssen, Real no-boundary wave function in Lorentzian quantum cosmology, Phys. Rev. D 96 (2017) 043505 [arXiv:1705.05340] [INSPIRE].

  73. J. Brown, A. Cole, G. Shiu and W. Cottrell, Gravitational decoupling and the Picard-Lefschetz approach, Phys. Rev. D 97 (2018) 025002 [arXiv:1710.04737] [INSPIRE].

  74. G.J. Loges, G. Shiu and N. Sudhir, Complex Saddles and Euclidean Wormholes in the Lorentzian Path Integral, arXiv:2203.01956 [INSPIRE].

  75. J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA

    Donald Marolf

Authors
  1. Donald Marolf
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Donald Marolf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2203.07421

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marolf, D. Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals. J. High Energ. Phys. 2022, 108 (2022). https://doi.org/10.1007/JHEP07(2022)108

Download citation

  • Received: 23 April 2022

  • Accepted: 17 June 2022

  • Published: 18 July 2022

  • DOI: https://doi.org/10.1007/JHEP07(2022)108

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Spacetime Singularities
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature