Skip to main content

Gravitational SL(2, ℝ) algebra on the light cone

A preprint version of the article is available at arXiv.

Abstract

In a region with a boundary, the gravitational phase space consists of radiative modes in the interior and edge modes at the boundary. Such edge modes are necessary to explain how the region couples to its environment. In this paper, we characterise the edge modes and radiative modes on a null surface for the tetradic Palatini-Holst action. Our starting point is the definition of the action and its boundary terms. We choose the least restrictive boundary conditions possible. The fixed boundary data consists of the radiative modes alone (two degrees of freedom per point). All other boundary fields are dynamical. We introduce the covariant phase space and explain how the Holst term alters the boundary symmetries. To infer the Poisson brackets among Dirac observables, we define an auxiliary phase space, where the SL(2, ℝ) symmetries of the boundary fields are manifest. We identify the gauge generators and second-class constraints that remove the auxiliary variables. All gauge generators are at most quadratic in the fundamental SL(2, ℝ) variables on phase space. We compute the Dirac bracket and identify the Dirac observables on the light cone. Finally, we discuss various truncations to quantise the system in an effective way.

References

  1. [1]

    J.F. Barbero G., Real Ashtekar variables for Lorentzian signature space times, Phys. Rev. D 51 (1995) 5507 [gr-qc/9410014] [INSPIRE].

  2. [2]

    G. Immirzi, Real and complex connections for canonical gravity, Class. Quant. Grav. 14 (1997) L177 [gr-qc/9612030] [INSPIRE].

  3. [3]

    L.B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article, Living Rev. Rel. 7 (2004) 4 [INSPIRE].

    MATH  Article  Google Scholar 

  4. [4]

    J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

  5. [5]

    B. Dittrich, C. Goeller, E.R. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity, Class. Quant. Grav. 35 (2018) 13LT01 [arXiv:1803.02759] [INSPIRE].

  6. [6]

    B. Dittrich, C. Goeller, E. Livine and A. Riello, Quasi-local holographic dualities in non-perturbative 3d quantum gravity I – Convergence of multiple approaches and examples of Ponzano-Regge statistical duals, Nucl. Phys. B 938 (2019) 807 [arXiv:1710.04202] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  7. [7]

    T. Andrade and D. Marolf, Asymptotic Symmetries from finite boxes, Class. Quant. Grav. 33 (2016) 015013 [arXiv:1508.02515] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    C. Troessaert, Hamiltonian surface charges using external sources, J. Math. Phys. 57 (2016) 053507 [arXiv:1509.09094] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    W. Wieland, Null infinity as an open Hamiltonian system, JHEP 04 (2021) 095 [arXiv:2012.01889] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  10. [10]

    R.E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. Lond. A 214 (1952) 143.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    A. Ashtekar, L. Bombelli and O. Reula, The Covariant Phase Space Of Asymptotically Flat Gravitational Fields, in Mechanics, Analysis and Geometry: 200 Years after Lagrange, M. Francaviglia and D. Holm eds., Amsterdam North Holland (1990).

  12. [12]

    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

  14. [14]

    R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

  15. [15]

    S. Holst, Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action, Phys. Rev. D 53 (1996) 5966 [gr-qc/9511026] [INSPIRE].

  16. [16]

    A. Corichi and E. Wilson-Ewing, Surface terms, Asymptotics and Thermodynamics of the Holst Action, Class. Quant. Grav. 27 (2010) 205015 [arXiv:1005.3298] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    A.P. Balachandran, L. Chandar and A. Momen, Edge states in gravity and black hole physics, Nucl. Phys. B 461 (1996) 581 [gr-qc/9412019] [INSPIRE].

  18. [18]

    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].

  20. [20]

    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    M. Bañados, T. Brotz and M.E. Ortiz, Boundary dynamics and the statistical mechanics of the (2+1)-dimensional black hole, Nucl. Phys. B 545 (1999) 340 [hep-th/9802076] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    S. Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge University Press, Cambridge U.K. (2003).

    MATH  Google Scholar 

  23. [23]

    S. Carlip, Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

  24. [24]

    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    G. Compère and A. Fiorucci, Asymptotically flat spacetimes with BMS3 symmetry, Class. Quant. Grav. 34 (2017) 204002 [arXiv:1705.06217] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  26. [26]

    W. Wieland, Conformal boundary conditions, loop gravity and the continuum, JHEP 10 (2018) 089 [arXiv:1804.08643] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    J.C. Namburi and W. Wieland, Deformed Heisenberg charges in three-dimensional gravity, JHEP 03 (2020) 175 [arXiv:1912.09514] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    W. Wieland, Twistor representation of Jackiw –Teitelboim gravity, Class. Quant. Grav. 37 (2020) 195008 [arXiv:2003.13887] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP 11 (2020) 026 [arXiv:2006.12527] [INSPIRE].

  30. [30]

    L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part II. Corner metric and Lorentz charges, JHEP 11 (2020) 027 [arXiv:2007.03563] [INSPIRE].

  31. [31]

    C. Rovelli, Gauge Is More Than Mathematical Redundancy, Fundam. Theor. Phys. 199 (2020) 107 [arXiv:2009.10362] [INSPIRE].

    Article  Google Scholar 

  32. [32]

    K. Rejzner and M. Schiavina, Asymptotic Symmetries in the BV-BFV Formalism, Commun. Math. Phys. 385 (2021) 1083 [arXiv:2002.09957] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    G. Barnich and R. Ruzziconi, Coadjoint representation of the BMS group on celestial Riemann surfaces, JHEP 06 (2021) 079 [arXiv:2103.11253] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett. 67 (1991) 1486 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    J. Frauendiener, Note on the memory effect, Class. Quant. Grav. 9 (1992) 1639.

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett. 57 (1986) 2244 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    R. Penrose and W. Rindler, Spinors and Space-Time, Two-Spinor Calculus and Relativistic Fields. Vol. 1. Cambridge University Press, Cambridge U.K. (1984).

  38. [38]

    R. Penrose and W. Rindler, Spinors and Space-Time, Two-Spinor Calculus and Relativistic Fields. Vol. 2. Cambridge University Press, Cambridge U.K. (1986).

  39. [39]

    W. Wieland, New boundary variables for classical and quantum gravity on a null surface, Class. Quant. Grav. 34 (2017) 215008 [arXiv:1704.07391] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    W. Wieland, Generating functional for gravitational null initial data, Class. Quant. Grav. 36 (2019) 235007 [arXiv:1905.06357] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    W. Wieland, Fock representation of gravitational boundary modes and the discreteness of the area spectrum, Annales Henri Poincaré 18 (2017) 3695 [arXiv:1706.00479] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    E. De Paoli and S. Speziale, A gauge-invariant symplectic potential for tetrad general relativity, JHEP 07 (2018) 040 [arXiv:1804.09685] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    J.F.B. G., J. Margalef-Bentabol, V. Varo and E.J.S. Villaseñor, Covariant phase space for gravity with boundaries: metric vs tetrad formulations, arXiv:2103.06362 [INSPIRE].

  44. [44]

    C.-N. Yang, Charge quantization, compactness of the gauge group, and flux quantization, Phys. Rev. D 1 (1970) 2360 [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442 (1995) 593 [Erratum ibid. 456 (1995) 753] [gr-qc/9411005] [INSPIRE].

  46. [46]

    C. Rovelli, Area is the length of Ashtekar’s triad field, Phys. Rev. D 47 (1993) 1703 [Erratum ibid. 87 (2013) 089902] [INSPIRE].

  47. [47]

    A. Ashtekar and J. Lewandowski, Quantum theory of geometry. 1: Area operators, Class. Quant. Grav. 14 (1997) A55 [gr-qc/9602046] [INSPIRE].

  48. [48]

    S.B. Giddings, Gravitational dressing, soft charges, and perturbative gravitational splitting, Phys. Rev. D 100 (2019) 126001 [arXiv:1903.06160] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    W. Donnelly and S.B. Giddings, Gravitational splitting at first order: Quantum information localization in gravity, Phys. Rev. D 98 (2018) 086006 [arXiv:1805.11095] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    L. Freidel and A. Perez, Quantum gravity at the corner, Universe 4 (2018) 107 [arXiv:1507.02573] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    E. De Paoli and S. Speziale, Sachs’ free data in real connection variables, JHEP 11 (2017) 205 [arXiv:1707.00667] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part III. Corner simplicity constraints, JHEP 01 (2021) 100 [arXiv:2007.12635] [INSPIRE].

  53. [53]

    R. Oeckl, A ‘General boundary’ formulation for quantum mechanics and quantum gravity, Phys. Lett. B 575 (2003) 318 [hep-th/0306025] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. [54]

    R. Oeckl, A local and operational framework for the foundations of physics, Adv. Theor. Math. Phys. 23 (2019) 437 [arXiv:1610.09052] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  55. [55]

    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    G. Wong, A note on entanglement edge modes in Chern Simons theory, JHEP 08 (2018) 020 [arXiv:1706.04666] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    C. Rovelli, Zakopane lectures on loop gravity, PoS QGQGS2011 (2011) 003 [arXiv:1102.3660] [INSPIRE].

  58. [58]

    A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A Status report, Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [INSPIRE].

  59. [59]

    L. Freidel, E.R. Livine and D. Pranzetti, Gravitational edge modes: from Kac-Moody charges to Poincaré networks, Class. Quant. Grav. 36 (2019) 195014 [arXiv:1906.07876] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    L. Freidel and E.R. Livine, Bubble networks: framed discrete geometry for quantum gravity, Gen. Rel. Grav. 51 (2019) 9 [arXiv:1810.09364] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    H.M. Haggard, C. Rovelli, W. Wieland and F. Vidotto, Spin connection of twisted geometry, Phys. Rev. D 87 (2013) 024038 [arXiv:1211.2166] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    H. Sahlmann, T. Thiemann and O. Winkler, Coherent states for canonical quantum general relativity and the infinite tensor product extension, Nucl. Phys. B 606 (2001) 401 [gr-qc/0102038] [INSPIRE].

  63. [63]

    B. Dittrich, The continuum limit of loop quantum gravity - a framework for solving the theory, in Loop Quantum Gravity: The First 30 Years, A. Ashtekar and J. Pullin, eds. (2017), DOI [arXiv:1409.1450] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wieland.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.05803

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wieland, W. Gravitational SL(2, ℝ) algebra on the light cone. J. High Energ. Phys. 2021, 57 (2021). https://doi.org/10.1007/JHEP07(2021)057

Download citation

Keywords

  • Classical Theories of Gravity
  • Models of Quantum Gravity