Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
The multiple-charm hierarchy in the statistical hadronization model
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Study on open charm hadron production and angular correlation in high-energy nuclear collisions

19 January 2021

Hai Wang & Jin-Hui Chen

Charmed baryon–nucleon interaction

15 July 2019

H. Garcilazo, A. Valcarce & T. F. Caramés

Intrinsic charm in the nucleon and charm production at large rapidities in collinear, hybrid and kT-factorization approaches

21 October 2020

Rafał Maciuła & Antoni Szczurek

Charmed and bottomed hadronic cross sections from a statistical model

23 September 2020

Gábor Balassa & György Wolf

Fragmentation of charmed quark to double-charmed hadrons

01 May 2021

S. P. Baranov & B. Z. Kopeliovich

Charmonium suppression in ultra-relativistic proton–proton collisions at LHC energies: a hint for QGP in small systems

18 June 2022

Captain R. Singh, Suman Deb, … Jan-e Alam

Study of Charmonium-Like Structure in Hadron and Heavy Ion Collisions

01 May 2021

M. Yu. Barabanov & A. S. Vodopyanov

Non-extensive statistical distributions of charmed meson production in Pb–Pb and pp( $$\overline{\text {p}}$$ p ¯ ) collisions

05 October 2021

Yuan Su, Yong-Jie Sun, … Xiao-Long Chen

In-medium hadronization of heavy quarks and its effect on charmed meson and baryon distributions in heavy-ion collisions

11 July 2022

Andrea Beraudo, Arturo De Pace, … Francesco Prino

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 08 July 2021

The multiple-charm hierarchy in the statistical hadronization model

  • Anton Andronic1,
  • Peter Braun-Munzinger2,3,4,
  • Markus K. Köhler3,
  • Aleksas Mazeliauskas5,
  • Krzysztof Redlich6,
  • Johanna Stachel2,3 &
  • …
  • Vytautas Vislavicius7 

Journal of High Energy Physics volume 2021, Article number: 35 (2021) Cite this article

  • 301 Accesses

  • 18 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

In relativistic nuclear collisions the production of hadrons with light (u,d,s) quarks is quantitatively described in the framework of the Statistical Hadronization Model (SHM). Charm quarks are dominantly produced in initial hard collisions but interact strongly in the hot fireball and thermalize. Therefore charmed hadrons can be incorporated into the SHM by treating charm quarks as ‘impurities’ with thermal distributions, while the total charm content of the fireball is fixed by the measured open charm cross section. We call this model SHMc and demonstrate that with SHMc the measured multiplicities of single charm hadrons in lead-lead collisions at LHC energies can be well described with the same thermal parameters as for (u,d,s) hadrons. Furthermore, transverse momentum distributions are computed in a blast-wave model, which includes the resonance decay kinematics. SHMc is extended to lighter collision systems down to oxygen-oxygen and includes doubly- and triply-charmed hadrons. We show predictions for production probabilities of such states exhibiting a characteristic and quite spectacular enhancement hierarchy.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature 561 (2018) 321 [arXiv:1710.09425] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Andronic, P. Braun-Munzinger, B. Friman, P.M. Lo, K. Redlich and J. Stachel, The thermal proton yield anomaly in Pb-Pb collisions at the LHC and its resolution, Phys. Lett. B 792 (2019) 304 [arXiv:1808.03102] [INSPIRE].

    Article  ADS  Google Scholar 

  3. HotQCD collaboration, Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].

  4. HotQCD collaboration, Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15 [arXiv:1812.08235] [INSPIRE].

  5. S. Borsányi et al., QCD Crossover at Finite Chemical Potential from Lattice Simulations, Phys. Rev. Lett. 125 (2020) 052001 [arXiv:2002.02821] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of charmonium production and a new look at J/ψ suppression, Phys. Lett. B 490 (2000) 196 [nucl-th/0007059] [INSPIRE].

  7. A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett. B 571 (2003) 36 [nucl-th/0303036] [INSPIRE].

  8. F. Becattini, Production of multiply heavy flavored baryons from quark gluon plasma in relativistic heavy ion collisions, Phys. Rev. Lett. 95 (2005) 022301 [hep-ph/0503239] [INSPIRE].

  9. A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of heavy quarks in ultra-relativistic nucleus-nucleus collisions, Nucl. Phys. A 789 (2007) 334 [nucl-th/0611023] [INSPIRE].

  10. A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Charmonium and open charm production in nuclear collisions at SPS/FAIR energies and the possible influence of a hot hadronic medium, Phys. Lett. B 659 (2008) 149 [arXiv:0708.1488] [INSPIRE].

    Article  ADS  Google Scholar 

  11. P. Braun-Munzinger and J. Stachel, The quest for the quark-gluon plasma, Nature 448 (2007) 302 [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Evidence for charmonium generation at the phase boundary in ultra-relativistic nuclear collisions, Phys. Lett. B 652 (2007) 259 [nucl-th/0701079] [INSPIRE].

  13. A. Andronic, P. Braun-Munzinger, M.K. Köhler and J. Stachel, Testing charm quark thermalisation within the Statistical Hadronisation Model, Nucl. Phys. A 982 (2019) 759 [arXiv:1807.01236] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Andronic, P. Braun-Munzinger, M.K. Köhler, K. Redlich and J. Stachel, Transverse momentum distributions of charmonium states with the statistical hadronization model, Phys. Lett. B 797 (2019) 134836 [arXiv:1901.09200] [INSPIRE].

    Article  Google Scholar 

  15. STAR collaboration, First measurement of Λc baryon production in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 124 (2020) 172301 [arXiv:1910.14628] [INSPIRE].

  16. ALICE collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 03 (2016) 081 [arXiv:1509.06888] [INSPIRE].

  17. ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 793 (2019) 212 [arXiv:1809.10922] [INSPIRE].

  18. ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production in pp and in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, arXiv:2011.06079 [INSPIRE].

  19. ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production and baryon-to-meson ratios in pp and p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV at the LHC, arXiv:2011.06078 [INSPIRE].

  20. CMS collaboration, Production of \( {\Lambda}_{\mathrm{c}}^{+} \) baryons in proton-proton and lead-lead collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 803 (2020) 135328 [arXiv:1906.03322] [INSPIRE].

  21. R. Katz, C.A.G. Prado, J. Noronha-Hostler and A.A.P. Suaide, System-size scan of D meson RAA and vn using PbPb, XeXe, ArAr, and OO collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 102 (2020) 041901 [arXiv:1907.03308] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Adamová et al., A next-generation LHC heavy-ion experiment, arXiv:1902.01211 [INSPIRE].

  23. A. Dainese et al., Heavy ions at the Future Circular Collider, arXiv:1605.01389 [INSPIRE].

  24. ALICE collaboration, D-meson production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV and in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. C 94 (2016) 054908 [arXiv:1605.07569] [INSPIRE].

  25. ALICE collaboration, Measurement of D-meson production at mid-rapidity in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 77 (2017) 550 [arXiv:1702.00766] [INSPIRE].

  26. ALICE collaboration, Measurement of D0, D+, D*+ and \( {\mathrm{D}}_{\mathrm{s}}^{+} \) production in pp collisions at \( \sqrt{\mathrm{s}} \) = 5.02 TeV with ALICE, Eur. Phys. J. C 79 (2019) 388 [arXiv:1901.07979] [INSPIRE].

  27. ALICE collaboration, Measurement of prompt D0, D+, D*+, and \( {\mathrm{D}}_{\mathrm{S}}^{+} \) production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 12 (2019) 092 [arXiv:1906.03425] [INSPIRE].

  28. LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s} \) = 5 TeV, JHEP 06 (2017) 147 [arXiv:1610.02230] [INSPIRE].

  29. LHCb collaboration, Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at \( \sqrt{s_{NN}} \) = 8.16 TeV, Phys. Lett. B 774 (2017) 159 [arXiv:1706.07122] [INSPIRE].

  30. LHCb collaboration, Study of prompt D0 meson production in pPb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5 TeV, JHEP 10 (2017) 090 [arXiv:1707.02750] [INSPIRE].

  31. M. Cacciari, M.L. Mangano and P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at \( \sqrt{S} \) = 7 and 13 TeV, Eur. Phys. J. C 75 (2015) 610 [arXiv:1507.06197] [INSPIRE].

    Article  ADS  Google Scholar 

  32. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  33. P. Braun-Munzinger and K. Redlich, Charmonium production from the secondary collisions at LHC energy, Eur. Phys. J. C 16 (2000) 519 [hep-ph/0001008] [INSPIRE].

  34. M.I. Gorenstein, A.P. Kostyuk, H. Stoecker and W. Greiner, Statistical coalescence model with exact charm conservation, Phys. Lett. B 509 (2001) 277 [hep-ph/0010148] [INSPIRE].

  35. P. Braun-Munzinger, K. Redlich and J. Stachel, Particle production in heavy ion collisions, nucl-th/0304013 [INSPIRE].

  36. ALICE collaboration, Global baryon number conservation encoded in net-proton fluctuations measured in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 807 (2020) 135564 [arXiv:1910.14396] [INSPIRE].

  37. A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys. A 810 (2008) 91 [arXiv:0804.3858] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D.G. d’Enterria, Hard scattering cross-sections at LHC in the Glauber approach: From pp to pA and AA collisions, nucl-ex/0302016 [INSPIRE].

  39. P. Braun-Munzinger, A. Rustamov and J. Stachel, The role of the local conservation laws in fluctuations of conserved charges, arXiv:1907.03032 [INSPIRE].

  40. J. Cleymans, P.M. Lo, K. Redlich and N. Sharma, Multiplicity dependence of (multi)strange baryons in the canonical ensemble with phase shift corrections, Phys. Rev. C 103 (2021) 014904 [arXiv:2009.04844] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Braun-Munzinger and J. Stachel, Charmonium from Statistical Hadronization of Heavy Quarks – a Probe for Deconfinement in the Quark-Gluon Plasma, Landolt-Bornstein 23 (2010) 424 [arXiv:0901.2500] [INSPIRE].

    ADS  Google Scholar 

  42. J. Zhao, K. Zhou, S. Chen and P. Zhuang, Heavy flavors under extreme conditions in high energy nuclear collisions, Prog. Part. Nucl. Phys. 114 (2020) 103801 [arXiv:2005.08277] [INSPIRE].

    Article  Google Scholar 

  43. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  44. P. Braun-Munzinger, J. Stachel and C. Wetterich, Chemical freezeout and the QCD phase transition temperature, Phys. Lett. B 596 (2004) 61 [nucl-th/0311005] [INSPIRE].

  45. ALICE collaboration, Measurement of beauty and charm production in pp collisions at \( \sqrt{s} \) = 5.02 TeV via non-prompt and prompt D mesons, JHEP 05 (2021) 220 [arXiv:2102.13601] [INSPIRE].

  46. ALICE collaboration, Inclusive J/ψ production at mid-rapidity in pp collisions at \( \sqrt{s} \) = 5.02 TeV, JHEP 10 (2019) 084 [arXiv:1905.07211] [INSPIRE].

  47. A. Bazavov et al., The melting and abundance of open charm hadrons, Phys. Lett. B 737 (2014) 210 [arXiv:1404.4043] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Padmanath, R.G. Edwards, N. Mathur and M. Peardon, Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD, in 6th International Workshop on Charm Physics, (2013) [arXiv:1311.4806] [INSPIRE].

  49. ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production in pp collisions at \( \sqrt{s} \) = 7 TeV and in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 04 (2018) 108 [arXiv:1712.09581] [INSPIRE].

  50. M. He and R. Rapp, Charm-Baryon Production in Proton-Proton Collisions, Phys. Lett. B 795 (2019) 117 [arXiv:1902.08889] [INSPIRE].

    Article  ADS  Google Scholar 

  51. D. Ebert, R.N. Faustov and V.O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D 84 (2011) 014025 [arXiv:1105.0583] [INSPIRE].

    Article  ADS  Google Scholar 

  52. P. Petreczky, Deconfinement and Hadron Resonance Gas for Heavy Quarks, in Criticality in QCD and the Hadron Resonance Gas, (2020) [arXiv:2011.01466] [INSPIRE].

  53. A.-L. Lorenz, H.-T. Ding, O. Kaczmarek, H. Ohno, H. Sandmeyer and H.-T. Shu, Thermal modifications of quarkonia and heavy quark diffusion from a comparison of continuum-extrapolated lattice results to perturbative QCD, PoS LATTICE2019 (2020) 207 [arXiv:2002.00681] [INSPIRE].

  54. A. Andronic et al., Influence of modified light-flavor hadron spectra on particle yields in the statistical hadronization model, Nucl. Phys. A 1010 (2021) 122176 [arXiv:2011.03826] [INSPIRE].

    Article  Google Scholar 

  55. P.M. Lo, B. Friman, K. Redlich and C. Sasaki, S-matrix analysis of the baryon electric charge correlation, Phys. Lett. B 778 (2018) 454 [arXiv:1710.02711] [INSPIRE].

    Article  ADS  Google Scholar 

  56. F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186 [INSPIRE].

    Article  ADS  Google Scholar 

  57. E. Schnedermann, J. Sollfrank and U.W. Heinz, Thermal phenomenology of hadrons from 200A/GeV S+S collisions, Phys. Rev. C 48 (1993) 2462 [nucl-th/9307020] [INSPIRE].

  58. W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, World Scientific Publishing Co. (2010) [DOI].

  59. ALICE collaboration, Centrality dependence of π, K, p production in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 88 (2013) 044910 [arXiv:1303.0737] [INSPIRE].

  60. ALICE collaboration, Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. C 101 (2020) 044907 [arXiv:1910.07678] [INSPIRE].

  61. ALICE collaboration, Multiplicity dependence of π, K, and p production in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 693 [arXiv:2003.02394] [INSPIRE].

  62. ALICE collaboration, Multiplicity dependence of light-flavor hadron production in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. C 99 (2019) 024906 [arXiv:1807.11321] [INSPIRE].

  63. B. Schenke, S. Jeon and C. Gale, (3 + 1)D hydrodynamic simulation of relativistic heavy-ion collisions, Phys. Rev. C 82 (2010) 014903 [arXiv:1004.1408] [INSPIRE].

  64. B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].

    Article  ADS  Google Scholar 

  65. W. Broniowski and W. Florkowski, Strange particle production at RHIC in a single freezeout model, Phys. Rev. C 65 (2002) 064905 [nucl-th/0112043] [INSPIRE].

  66. ALICE collaboration, Measurement of D0, D+, D*+ and \( {D}_s^{+} \) production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 10 (2018) 174 [arXiv:1804.09083] [INSPIRE].

  67. A. Mazeliauskas, S. Floerchinger, E. Grossi and D. Teaney, Fast resonance decays in nuclear collisions, Eur. Phys. J. C 79 (2019) 284 [arXiv:1809.11049] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. Mazeliauskas and V. Vislavicius, Temperature and fluid velocity on the freeze-out surface from π, K, p spectra in pp, p-Pb and Pb-Pb collisions, Phys. Rev. C 101 (2020) 014910 [arXiv:1907.11059] [INSPIRE].

    Article  ADS  Google Scholar 

  69. D. Devetak et al., Global fluid fits to identified particle transverse momentum spectra from heavy-ion collisions at the Large Hadron Collider, JHEP 06 (2020) 044 [arXiv:1909.10485] [INSPIRE].

    Article  ADS  Google Scholar 

  70. A. Mazeliauskas, S. Floerchinger, E. Grossi and D. Teaney, FastReso – program for computing irreducible components of the particle distribution from direct resonance decays, Github repository (2019) https://github.com/amazeliauskas/FastReso.

  71. ALICE collaboration, \( {K}_S^0 \) and Λ production in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. Lett. 111 (2013) 222301 [arXiv:1307.5530] [INSPIRE].

  72. ALICE collaboration, Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC, arXiv:2105.06335 [INSPIRE].

  73. Z. Citron et al., Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, CERN Yellow Rep. Monogr. 7 (2019) 1159 [arXiv:1812.06772] [INSPIRE].

    Google Scholar 

  74. C. Loizides, “QM19 summary talk”: Outlook and future of heavy-ion collisions, Nucl. Phys. A 1005 (2021) 121964 [arXiv:2007.00710] [INSPIRE].

    Article  Google Scholar 

  75. M. He and R. Rapp, Hadronization and Charm-Hadron Ratios in Heavy-Ion Collisions, Phys. Rev. Lett. 124 (2020) 042301 [arXiv:1905.09216] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149, Münster, Germany

    Anton Andronic

  2. Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, Darmstadt, Germany

    Peter Braun-Munzinger & Johanna Stachel

  3. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 223, Heidelberg, Germany

    Peter Braun-Munzinger, Markus K. Köhler & Johanna Stachel

  4. Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079, China

    Peter Braun-Munzinger

  5. Theoretical Physics Department, CERN, Espl. des Particules 1, CH-1211, Geneva 23, Switzerland

    Aleksas Mazeliauskas

  6. Institute of Theoretical Physics, University of Wrocław, plac Maxa Borna 9, 50-204, Wrocław, Poland

    Krzysztof Redlich

  7. Niels Bohr Institute, University of Copenhagen, Blegdamsvej, 17, Copenhagen, Denmark

    Vytautas Vislavicius

Authors
  1. Anton Andronic
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Peter Braun-Munzinger
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Markus K. Köhler
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Aleksas Mazeliauskas
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Krzysztof Redlich
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Johanna Stachel
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Vytautas Vislavicius
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Vytautas Vislavicius.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.12754

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronic, A., Braun-Munzinger, P., Köhler, M.K. et al. The multiple-charm hierarchy in the statistical hadronization model. J. High Energ. Phys. 2021, 35 (2021). https://doi.org/10.1007/JHEP07(2021)035

Download citation

  • Received: 06 May 2021

  • Revised: 09 June 2021

  • Accepted: 10 June 2021

  • Published: 08 July 2021

  • DOI: https://doi.org/10.1007/JHEP07(2021)035

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heavy Ion Phenomenology
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.