Abstract
In relativistic nuclear collisions the production of hadrons with light (u,d,s) quarks is quantitatively described in the framework of the Statistical Hadronization Model (SHM). Charm quarks are dominantly produced in initial hard collisions but interact strongly in the hot fireball and thermalize. Therefore charmed hadrons can be incorporated into the SHM by treating charm quarks as ‘impurities’ with thermal distributions, while the total charm content of the fireball is fixed by the measured open charm cross section. We call this model SHMc and demonstrate that with SHMc the measured multiplicities of single charm hadrons in lead-lead collisions at LHC energies can be well described with the same thermal parameters as for (u,d,s) hadrons. Furthermore, transverse momentum distributions are computed in a blast-wave model, which includes the resonance decay kinematics. SHMc is extended to lighter collision systems down to oxygen-oxygen and includes doubly- and triply-charmed hadrons. We show predictions for production probabilities of such states exhibiting a characteristic and quite spectacular enhancement hierarchy.
References
A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature 561 (2018) 321 [arXiv:1710.09425] [INSPIRE].
A. Andronic, P. Braun-Munzinger, B. Friman, P.M. Lo, K. Redlich and J. Stachel, The thermal proton yield anomaly in Pb-Pb collisions at the LHC and its resolution, Phys. Lett. B 792 (2019) 304 [arXiv:1808.03102] [INSPIRE].
HotQCD collaboration, Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
HotQCD collaboration, Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15 [arXiv:1812.08235] [INSPIRE].
S. Borsányi et al., QCD Crossover at Finite Chemical Potential from Lattice Simulations, Phys. Rev. Lett. 125 (2020) 052001 [arXiv:2002.02821] [INSPIRE].
P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of charmonium production and a new look at J/ψ suppression, Phys. Lett. B 490 (2000) 196 [nucl-th/0007059] [INSPIRE].
A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett. B 571 (2003) 36 [nucl-th/0303036] [INSPIRE].
F. Becattini, Production of multiply heavy flavored baryons from quark gluon plasma in relativistic heavy ion collisions, Phys. Rev. Lett. 95 (2005) 022301 [hep-ph/0503239] [INSPIRE].
A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of heavy quarks in ultra-relativistic nucleus-nucleus collisions, Nucl. Phys. A 789 (2007) 334 [nucl-th/0611023] [INSPIRE].
A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Charmonium and open charm production in nuclear collisions at SPS/FAIR energies and the possible influence of a hot hadronic medium, Phys. Lett. B 659 (2008) 149 [arXiv:0708.1488] [INSPIRE].
P. Braun-Munzinger and J. Stachel, The quest for the quark-gluon plasma, Nature 448 (2007) 302 [INSPIRE].
A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Evidence for charmonium generation at the phase boundary in ultra-relativistic nuclear collisions, Phys. Lett. B 652 (2007) 259 [nucl-th/0701079] [INSPIRE].
A. Andronic, P. Braun-Munzinger, M.K. Köhler and J. Stachel, Testing charm quark thermalisation within the Statistical Hadronisation Model, Nucl. Phys. A 982 (2019) 759 [arXiv:1807.01236] [INSPIRE].
A. Andronic, P. Braun-Munzinger, M.K. Köhler, K. Redlich and J. Stachel, Transverse momentum distributions of charmonium states with the statistical hadronization model, Phys. Lett. B 797 (2019) 134836 [arXiv:1901.09200] [INSPIRE].
STAR collaboration, First measurement of Λc baryon production in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 124 (2020) 172301 [arXiv:1910.14628] [INSPIRE].
ALICE collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 03 (2016) 081 [arXiv:1509.06888] [INSPIRE].
ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 793 (2019) 212 [arXiv:1809.10922] [INSPIRE].
ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production in pp and in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, arXiv:2011.06079 [INSPIRE].
ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production and baryon-to-meson ratios in pp and p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV at the LHC, arXiv:2011.06078 [INSPIRE].
CMS collaboration, Production of \( {\Lambda}_{\mathrm{c}}^{+} \) baryons in proton-proton and lead-lead collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 803 (2020) 135328 [arXiv:1906.03322] [INSPIRE].
R. Katz, C.A.G. Prado, J. Noronha-Hostler and A.A.P. Suaide, System-size scan of D meson RAA and vn using PbPb, XeXe, ArAr, and OO collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 102 (2020) 041901 [arXiv:1907.03308] [INSPIRE].
D. Adamová et al., A next-generation LHC heavy-ion experiment, arXiv:1902.01211 [INSPIRE].
A. Dainese et al., Heavy ions at the Future Circular Collider, arXiv:1605.01389 [INSPIRE].
ALICE collaboration, D-meson production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV and in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. C 94 (2016) 054908 [arXiv:1605.07569] [INSPIRE].
ALICE collaboration, Measurement of D-meson production at mid-rapidity in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 77 (2017) 550 [arXiv:1702.00766] [INSPIRE].
ALICE collaboration, Measurement of D0, D+, D*+ and \( {\mathrm{D}}_{\mathrm{s}}^{+} \) production in pp collisions at \( \sqrt{\mathrm{s}} \) = 5.02 TeV with ALICE, Eur. Phys. J. C 79 (2019) 388 [arXiv:1901.07979] [INSPIRE].
ALICE collaboration, Measurement of prompt D0, D+, D*+, and \( {\mathrm{D}}_{\mathrm{S}}^{+} \) production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 12 (2019) 092 [arXiv:1906.03425] [INSPIRE].
LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s} \) = 5 TeV, JHEP 06 (2017) 147 [arXiv:1610.02230] [INSPIRE].
LHCb collaboration, Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at \( \sqrt{s_{NN}} \) = 8.16 TeV, Phys. Lett. B 774 (2017) 159 [arXiv:1706.07122] [INSPIRE].
LHCb collaboration, Study of prompt D0 meson production in pPb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5 TeV, JHEP 10 (2017) 090 [arXiv:1707.02750] [INSPIRE].
M. Cacciari, M.L. Mangano and P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at \( \sqrt{S} \) = 7 and 13 TeV, Eur. Phys. J. C 75 (2015) 610 [arXiv:1507.06197] [INSPIRE].
ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].
P. Braun-Munzinger and K. Redlich, Charmonium production from the secondary collisions at LHC energy, Eur. Phys. J. C 16 (2000) 519 [hep-ph/0001008] [INSPIRE].
M.I. Gorenstein, A.P. Kostyuk, H. Stoecker and W. Greiner, Statistical coalescence model with exact charm conservation, Phys. Lett. B 509 (2001) 277 [hep-ph/0010148] [INSPIRE].
P. Braun-Munzinger, K. Redlich and J. Stachel, Particle production in heavy ion collisions, nucl-th/0304013 [INSPIRE].
ALICE collaboration, Global baryon number conservation encoded in net-proton fluctuations measured in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 807 (2020) 135564 [arXiv:1910.14396] [INSPIRE].
A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys. A 810 (2008) 91 [arXiv:0804.3858] [INSPIRE].
D.G. d’Enterria, Hard scattering cross-sections at LHC in the Glauber approach: From pp to pA and AA collisions, nucl-ex/0302016 [INSPIRE].
P. Braun-Munzinger, A. Rustamov and J. Stachel, The role of the local conservation laws in fluctuations of conserved charges, arXiv:1907.03032 [INSPIRE].
J. Cleymans, P.M. Lo, K. Redlich and N. Sharma, Multiplicity dependence of (multi)strange baryons in the canonical ensemble with phase shift corrections, Phys. Rev. C 103 (2021) 014904 [arXiv:2009.04844] [INSPIRE].
P. Braun-Munzinger and J. Stachel, Charmonium from Statistical Hadronization of Heavy Quarks – a Probe for Deconfinement in the Quark-Gluon Plasma, Landolt-Bornstein 23 (2010) 424 [arXiv:0901.2500] [INSPIRE].
J. Zhao, K. Zhou, S. Chen and P. Zhuang, Heavy flavors under extreme conditions in high energy nuclear collisions, Prog. Part. Nucl. Phys. 114 (2020) 103801 [arXiv:2005.08277] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
P. Braun-Munzinger, J. Stachel and C. Wetterich, Chemical freezeout and the QCD phase transition temperature, Phys. Lett. B 596 (2004) 61 [nucl-th/0311005] [INSPIRE].
ALICE collaboration, Measurement of beauty and charm production in pp collisions at \( \sqrt{s} \) = 5.02 TeV via non-prompt and prompt D mesons, JHEP 05 (2021) 220 [arXiv:2102.13601] [INSPIRE].
ALICE collaboration, Inclusive J/ψ production at mid-rapidity in pp collisions at \( \sqrt{s} \) = 5.02 TeV, JHEP 10 (2019) 084 [arXiv:1905.07211] [INSPIRE].
A. Bazavov et al., The melting and abundance of open charm hadrons, Phys. Lett. B 737 (2014) 210 [arXiv:1404.4043] [INSPIRE].
M. Padmanath, R.G. Edwards, N. Mathur and M. Peardon, Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD, in 6th International Workshop on Charm Physics, (2013) [arXiv:1311.4806] [INSPIRE].
ALICE collaboration, \( {\Lambda}_{\mathrm{c}}^{+} \) production in pp collisions at \( \sqrt{s} \) = 7 TeV and in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 04 (2018) 108 [arXiv:1712.09581] [INSPIRE].
M. He and R. Rapp, Charm-Baryon Production in Proton-Proton Collisions, Phys. Lett. B 795 (2019) 117 [arXiv:1902.08889] [INSPIRE].
D. Ebert, R.N. Faustov and V.O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D 84 (2011) 014025 [arXiv:1105.0583] [INSPIRE].
P. Petreczky, Deconfinement and Hadron Resonance Gas for Heavy Quarks, in Criticality in QCD and the Hadron Resonance Gas, (2020) [arXiv:2011.01466] [INSPIRE].
A.-L. Lorenz, H.-T. Ding, O. Kaczmarek, H. Ohno, H. Sandmeyer and H.-T. Shu, Thermal modifications of quarkonia and heavy quark diffusion from a comparison of continuum-extrapolated lattice results to perturbative QCD, PoS LATTICE2019 (2020) 207 [arXiv:2002.00681] [INSPIRE].
A. Andronic et al., Influence of modified light-flavor hadron spectra on particle yields in the statistical hadronization model, Nucl. Phys. A 1010 (2021) 122176 [arXiv:2011.03826] [INSPIRE].
P.M. Lo, B. Friman, K. Redlich and C. Sasaki, S-matrix analysis of the baryon electric charge correlation, Phys. Lett. B 778 (2018) 454 [arXiv:1710.02711] [INSPIRE].
F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186 [INSPIRE].
E. Schnedermann, J. Sollfrank and U.W. Heinz, Thermal phenomenology of hadrons from 200A/GeV S+S collisions, Phys. Rev. C 48 (1993) 2462 [nucl-th/9307020] [INSPIRE].
W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, World Scientific Publishing Co. (2010) [DOI].
ALICE collaboration, Centrality dependence of π, K, p production in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 88 (2013) 044910 [arXiv:1303.0737] [INSPIRE].
ALICE collaboration, Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. C 101 (2020) 044907 [arXiv:1910.07678] [INSPIRE].
ALICE collaboration, Multiplicity dependence of π, K, and p production in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 693 [arXiv:2003.02394] [INSPIRE].
ALICE collaboration, Multiplicity dependence of light-flavor hadron production in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. C 99 (2019) 024906 [arXiv:1807.11321] [INSPIRE].
B. Schenke, S. Jeon and C. Gale, (3 + 1)D hydrodynamic simulation of relativistic heavy-ion collisions, Phys. Rev. C 82 (2010) 014903 [arXiv:1004.1408] [INSPIRE].
B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].
W. Broniowski and W. Florkowski, Strange particle production at RHIC in a single freezeout model, Phys. Rev. C 65 (2002) 064905 [nucl-th/0112043] [INSPIRE].
ALICE collaboration, Measurement of D0, D+, D*+ and \( {D}_s^{+} \) production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 10 (2018) 174 [arXiv:1804.09083] [INSPIRE].
A. Mazeliauskas, S. Floerchinger, E. Grossi and D. Teaney, Fast resonance decays in nuclear collisions, Eur. Phys. J. C 79 (2019) 284 [arXiv:1809.11049] [INSPIRE].
A. Mazeliauskas and V. Vislavicius, Temperature and fluid velocity on the freeze-out surface from π, K, p spectra in pp, p-Pb and Pb-Pb collisions, Phys. Rev. C 101 (2020) 014910 [arXiv:1907.11059] [INSPIRE].
D. Devetak et al., Global fluid fits to identified particle transverse momentum spectra from heavy-ion collisions at the Large Hadron Collider, JHEP 06 (2020) 044 [arXiv:1909.10485] [INSPIRE].
A. Mazeliauskas, S. Floerchinger, E. Grossi and D. Teaney, FastReso – program for computing irreducible components of the particle distribution from direct resonance decays, Github repository (2019) https://github.com/amazeliauskas/FastReso.
ALICE collaboration, \( {K}_S^0 \) and Λ production in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. Lett. 111 (2013) 222301 [arXiv:1307.5530] [INSPIRE].
ALICE collaboration, Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC, arXiv:2105.06335 [INSPIRE].
Z. Citron et al., Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, CERN Yellow Rep. Monogr. 7 (2019) 1159 [arXiv:1812.06772] [INSPIRE].
C. Loizides, “QM19 summary talk”: Outlook and future of heavy-ion collisions, Nucl. Phys. A 1005 (2021) 121964 [arXiv:2007.00710] [INSPIRE].
M. He and R. Rapp, Hadronization and Charm-Hadron Ratios in Heavy-Ion Collisions, Phys. Rev. Lett. 124 (2020) 042301 [arXiv:1905.09216] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2104.12754
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Andronic, A., Braun-Munzinger, P., Köhler, M.K. et al. The multiple-charm hierarchy in the statistical hadronization model. J. High Energ. Phys. 2021, 35 (2021). https://doi.org/10.1007/JHEP07(2021)035
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2021)035
Keywords
- Heavy Ion Phenomenology