Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Vacuum thermal effects in flat space-time from conformal quantum mechanics

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 02 July 2021
  • volume 2021, Article number: 3 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Vacuum thermal effects in flat space-time from conformal quantum mechanics
Download PDF
  • Michele Arzano1,2 
  • 190 Accesses

  • 2 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

The generators of radial conformal symmetries in Minkowski space-time can be mapped to the generators of time evolution in conformal quantum mechanics. Within this correspondence we show that in conformal quantum mechanics the state associated to the inertial vacuum in Minkowski space-time has the structure of a thermofield double. Such state is built from a bipartite “vacuum state”, the ground state of the generators of hyperbolic time evolution, which cover only part of the time domain. When time evolution is restricted to a finite time domain one obtains the temperature perceived by static diamond observers in the Minkowski vacuum. When time evolution is determined by dilations, covering only half of the time line, the temperature of the thermofield double corresponds to the non-vanishing temperature perceived by Milne observers whose proper time evolution is confined to the future cone (Milne universe) of Minkowski space-time. The two pictures are related by a conformal transformation on the real line. Our result provides a purely group theoretical derivation of the Milne and diamond temperatures and shows that the fundamental ingredient for vacuum thermal effects is the presence of a horizon rather than acceleration.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. C. W. Davies, Particles Do Not Exist, in Quantum Theory Of Gravity, S. M. Christensen ed. (1984), pp. 66–77 [INSPIRE].

  2. S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  3. W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S. D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. S. B. Giddings, Black holes in the quantum universe, Phil. Trans. Roy. Soc. Lond. A 377 (2019) 20190029 [arXiv:1905.08807] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Carlip, Black Hole Entropy and the Problem of Universality, in Workshop on Quantum Mechanics of Fundamental Systems: the Quest for Beauty and Simplicity: Dedicated to Claudio Bunster on the occasion of his 60th birthday, (2008) [DOI] [arXiv:0807.4192] [INSPIRE].

  9. T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].

  10. A. Ashtekar and A. Magnon, Quantum Fields in Curved Space-Times, Proc. Roy. Soc. Lond. A 346 (1975) 375 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, University of Chicago Press, Chicago (1994) [INSPIRE].

    MATH  Google Scholar 

  12. R. M. Wald, Particle and energy cost of entanglement of Hawking radiation with the final vacuum state, Phys. Rev. D 100 (2019) 065019 [arXiv:1908.06363] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Higuchi, S. Iso, K. Ueda and K. Yamamoto, Entanglement of the Vacuum between Left, Right, Future, and Past: The Origin of Entanglement-Induced Quantum Radiation, Phys. Rev. D 96 (2017) 083531 [arXiv:1709.05757] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. S. J. Olson and T. C. Ralph, Entanglement between the future and past in the quantum vacuum, Phys. Rev. Lett. 106 (2011) 110404 [arXiv:1003.0720] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Herrero and J. A. Morales, Radial conformal motions in minkowski space-time, J. Math. Phys. 40 (1999) 3499.

    Article  ADS  MathSciNet  Google Scholar 

  17. T. De Lorenzo and A. Perez, Light Cone Thermodynamics, Phys. Rev. D 97 (2018) 044052 [arXiv:1707.00479] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. T. De Lorenzo and A. Perez, Light Cone Black Holes, Phys. Rev. D 99 (2019) 065009 [arXiv:1811.03667] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Martinetti and C. Rovelli, Diamonds’s temperature: Unruh effect for bounded trajectories and thermal time hypothesis, Class. Quant. Grav. 20 (2003) 4919 [gr-qc/0212074] [INSPIRE].

  20. D. Su and T. C. Ralph, Spacetime diamonds, Phys. Rev. D 93 (2016) 044023 [arXiv:1507.00423] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Arzano, Conformal quantum mechanics of causal diamonds, JHEP 05 (2020) 072 [arXiv:2002.01836] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. V. de Alfaro, S. Fubini and G. Furlan, Conformal Invariance in Quantum Mechanics, Nuovo Cim. A 34 (1976) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Anninos, S. A. Hartnoll and D. M. Hofman, Static Patch Solipsism: Conformal Symmetry of the de Sitter Worldline, Class. Quant. Grav. 29 (2012) 075002 [arXiv:1109.4942] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Nakayama, The World-Line Quantum Mechanics Model at Finite Temperature which is Dual to the Static Patch Observer in de Sitter Space, Prog. Theor. Phys. 127 (2012) 393 [arXiv:1112.1267] [INSPIRE].

    Article  ADS  Google Scholar 

  25. H. Casini, M. Huerta and R. C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Jacobson and M. Visser, Gravitational Thermodynamics of Causal Diamonds in (A)dS, SciPost Phys. 7 (2019) 079 [arXiv:1812.01596] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Conformal quantum mechanics as the CFT1 dual to AdS2 , Phys. Lett. B 701 (2011) 503 [arXiv:1106.0726] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Jackiw and S. Y. Pi, Conformal Blocks for the 4-Point Function in Conformal Quantum Mechanics, Phys. Rev. D 86 (2012) 045017 [Erratum ibid. 86 (2012) 089905] [arXiv:1205.0443] [INSPIRE].

  29. M. Arzano and J. Kowalski-Glikman, Horizon temperature on the real line, Phys. Lett. B 788 (2019) 82 [arXiv:1804.10550] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Ban, SU(1, 1) Lie algebraic approach to linear dissipative processes in quantum optics, J. Math. Phys. 33 (1992) 3213 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Chaturvedi and V. Srinivasan, Class of exactly solvable master equations describing coupled nonlinear oscillators, Phys. Rev. A 43 (1991) 4054 [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. C. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson and A. R. Santana, Thermal quantum field theory - Algebraic aspects and applications, World Scientific, New Jersey (2009) [INSPIRE].

    Book  Google Scholar 

  33. S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys. 6 (2019) 034 [arXiv:1810.05151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, I-80125, Napoli, Italy

    Michele Arzano

  2. INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126, Napoli, Italy

    Michele Arzano

Authors
  1. Michele Arzano
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michele Arzano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.07228

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzano, M. Vacuum thermal effects in flat space-time from conformal quantum mechanics. J. High Energ. Phys. 2021, 3 (2021). https://doi.org/10.1007/JHEP07(2021)003

Download citation

  • Received: 19 March 2021

  • Accepted: 14 June 2021

  • Published: 02 July 2021

  • DOI: https://doi.org/10.1007/JHEP07(2021)003

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal and W Symmetry
  • Space-Time Symmetries
  • Thermal Field Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature