Skip to main content
Log in

Further Insights into Thermal Relativity Theory and Black Hole Thermodynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We continue to explore the consequences of Thermal Relativity Theory to the physics of black holes. The thermal analog of Lorentz transformations in the tangent space of the thermodynamic manifold are studied in connection to the Hawking evaporation of Schwarzschild black holes and one finds that there is no bound to the thermal analog of proper accelerations despite the maximal bound on the thermal analog of velocity given by the Planck temperature. The proper entropic infinitesimal interval corresponding to the Kerr–Newman black hole involves a \( 3 \times 3 \) non-Hessian metric with diagonal and off-diagonal terms of the form \( ( d\mathbf{s} )^2 = g_{ ab } ( M, Q, J ) d Z^a dZ^b\), where \( Z^a = M, Q, J \) are the mass, charge and angular momentum, respectively. Since the computation of the scalar curvature associated to this metric is very elaborate, to simplify matters, we focused on the singularities of the metric and found that they correspond to the extremal Kerr–Newman black hole case \( r_+ = r_- = GM\) with vanishing temperature. Black holes in asymptotically Anti de Sitter spacetimes are more subtle to study since the mass turns out to be related to the enthalpy rather that the internal energy. We finalize with some remarks about the thermal-relativistic analog of proper force, the need to extend our analysis of Gibbs-Boltzmann entropy to the case of Reny and Tsallis entropies, and to complexify spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinhold, F.: Metric geometry of equilibrium thermodynamics. I, II, III, IV, V. J. Chem. Phys. 63, 2479, 2484, 2488, 2496 (1975); 65, 558 (1976)

  2. Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  3. Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605 (1995); Erratum 68, 313 (1996)

  4. Aman, J., Bengtsson, I., Pidokrajt, N., Ward, J.: Thermodynamic geometries of black holes. The Eleventh Marcel Grossmann Meeting 2008, 1511–1513 (2008). https://doi.org/10.1142/9789812834300_0182

  5. Aman, J., Bengtsson, I., Pidokrajt, N., Ward J.: Ruppeiner Geometry. https://en.wikipedia.org/wiki/Ruppeiner_geometry (2008)

  6. Vacaru, S.: Stochastic processes and thermodynamics on curved spaces. Ann. Phys. 9(Special Issue), 175176 (2000)

    Google Scholar 

  7. Vacaru, S.: The entropy of Lagrange-Finsler spaces and Ricci flows. Rep. Math. Phys. 63, 95110 (2009)

    Article  MathSciNet  Google Scholar 

  8. Quevedo, H.: Geometrothermodynamics. J. Math. Phys. 48, 013506 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Quevedo, H., Sanchez, A., Vazquez, A.: Invariant Geometry of the Ideal Gas. arXiv:math-ph/0811.0222

  10. Pineda, V., Quevedo, H., Quevedo, M.N., Sanchez, Valdes, E.: On the physical significance of geometrothermodynamic metrics. arXiv:1704.03071

  11. Zhao, L.: Thermal relativity. Commun. Theor. Phys. 56(6), 1052–1056 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. Castro Perelman, C.: Thermal relativity, corrections to black-hole entropy, Born’s reciprocal relativity theory and quantum gravity. Can. J. Phys. 97(12), 1309–1316 (2019)

    Article  Google Scholar 

  13. Castro Perelman, C.: On thermal relativity, modified hawking radiation, and the generalized uncertainty principle. Int. J. Geom. Methods Mod. Phys. 16(10), 1950156–3590 (2019)

    Article  MathSciNet  Google Scholar 

  14. Unruh, W.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870 (1976)

    Article  ADS  Google Scholar 

  15. Fulling, S.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7(10), 2850 (1973)

    Article  ADS  Google Scholar 

  16. Davies, P.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 8(4), 609 (1975)

    Article  ADS  Google Scholar 

  17. Wei, S., Liu, Y.: A general thermodynamic geometry approach for rotating Kerr anti-de Sitter black holes. arXiv:2106.06704

  18. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quantum Gravity 26, 195011 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kubiznak, D., Mann, R.B.: P-V criticality of charged AdS black holes. J. High Energy Phys. 1207, 033 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Altamirano, N., Kubiznak, D., Mann, R.B.: Reentrant phase transitions in rotating AdS black holes. Phys. Rev. D 88, 101502(R) (2013)

    Article  ADS  Google Scholar 

  21. Wei, S., Liu, Y., Mann, R.B.: Characteristic interaction potential of black hole molecules from the microscopic interpretation of Ruppeiner geometry. arXiv:2108.07655

  22. Dutta, S., Singh Punia, G.: On the interaction between black hole molecules. arXiv:2108.06135

  23. Promsiri, C., Hirunsirisawatb, E., Liewriana, W.: Solid/liquid phase transition and heat engine in asymptotically flat Schwarzschild black hole via the Renyi extended phase space approach. arXiv:2106.02406

  24. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1–2), 479–487 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. Renyi, A.: On the dimension and entropy of probability distribution. Acta Math. Acad. Sci. Hung. 10, 193 (1959)

    Article  MathSciNet  Google Scholar 

  26. Becattini, F.: Thermodynamic equilibrium in relativity: four-temperature, Killing vectors and Lie derivatives. Acta Phys. Pol. B 47, 1819 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hakim, R.: Introduction to Relativistic Statistical Mechanics. World Scientific, Singapore (2011)

    Book  Google Scholar 

  28. Tolman, R.C.: Relativity, thermodynamics and cosmology. Clarendon Oxford, Oxford (1934)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank M. Bowers for very kind assistance and to the referee for very useful suggestions to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Castro Perelman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perelman, C.C. Further Insights into Thermal Relativity Theory and Black Hole Thermodynamics. Found Phys 51, 99 (2021). https://doi.org/10.1007/s10701-021-00504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00504-2

Keywords

Navigation