Abstract
We construct explicit examples of non-relativistic supersymmetric field theories on curved Newton-Cartan three-manifolds. These results are obtained by performing a null reduction of four-dimensional supersymmetric field theories on Lorentzian manifolds and the Killing spinor equations that their supersymmetry parameters obey. This gives rise to a set of algebraic and differential Killing spinor equations that are obeyed by the supersymmetry parameters of the resulting three-dimensional non-relativistic field theories. We derive necessary and sufficient conditions that determine whether a Newton-Cartan background admits non-trivial solutions of these Killing spinor equations. Two classes of examples of Newton-Cartan backgrounds that obey these conditions are discussed. The first class is characterised by an integrable foliation, corresponding to so-called twistless torsional geometries, and includes manifolds whose spatial slices are isomorphic to the Poincaŕe disc. The second class of examples has a non-integrable foliation structure and corresponds to contact manifolds.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].
G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].
V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
J.T. Liu, L.A. Pando Zayas and D. Reichmann, Rigid Supersymmetric Backgrounds of Minimal Off-Shell Supergravity, JHEP 10 (2012) 034 [arXiv:1207.2785] [INSPIRE].
D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in Lorentzian Curved Spaces and Holography, Commun. Math. Phys. 327 (2014) 577 [arXiv:1207.2181] [INSPIRE].
D.T. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].
S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].
K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].
M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan Geometry and Lifshitz Holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].
M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary Stress-Energy Tensor and Newton-Cartan Geometry in Lifshitz Holography, JHEP 01 (2014) 057 [arXiv:1311.6471] [INSPIRE].
M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].
S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].
C. Hoyos and D.T. Son, Hall Viscosity and Electromagnetic Response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].
D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638 [INSPIRE].
A.G. Abanov, On the effective hydrodynamics of the fractional quantum Hall effect, J. Phys. A 46 (2013) 292001 [arXiv:1212.0461] [INSPIRE].
A. Gromov and A.G. Abanov, Thermal Hall Effect and Geometry with Torsion, Phys. Rev. Lett. 114 (2015) 016802 [arXiv:1407.2908] [INSPIRE].
A. Gromov, K. Jensen and A.G. Abanov, Boundary effective action for quantum Hall states, Phys. Rev. Lett. 116 (2016) 126802 [arXiv:1506.07171] [INSPIRE].
M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime Symmetries of the Quantum Hall Effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].
M. Geracie, K. Prabhu and M.M. Roberts, Curved non-relativistic spacetimes, Newtonian gravitation and massive matter, J. Math. Phys. 56 (2015) 103505 [arXiv:1503.02682] [INSPIRE].
M. Geracie, K. Prabhu and M.M. Roberts, Fields and fluids on curved non-relativistic spacetimes, JHEP 08 (2015) 042 [arXiv:1503.02680] [INSPIRE].
M. Geracie, K. Prabhu and M.M. Roberts, Covariant effective action for a Galilean invariant quantum Hall system, JHEP 09 (2016) 092 [arXiv:1603.08934] [INSPIRE].
É . Cartan, Sur les varíet́es à connexion affine et la th́eorie de la relativit́e ǵeńeraliśee (suite), Ann. École Norm. Sup. 40 (1923) 325.
S. Chapman, Y. Oz and A. Raviv-Moshe, On Supersymmetric Lifshitz Field Theories, JHEP 10 (2015) 162 [arXiv:1508.03338] [INSPIRE].
I. Arav, Y. Oz and A. Raviv-Moshe, Holomorphic Structure and Quantum Critical Points in Supersymmetric Lifshitz Field Theories, JHEP 11 (2019) 064 [arXiv:1908.03220] [INSPIRE].
R. Andringa, E.A. Bergshoeff, J. Rosseel and E. Sezgin, 3D Newton-Cartan supergravity, Class. Quant. Grav. 30 (2013) 205005 [arXiv:1305.6737] [INSPIRE].
E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan (super) gravity as a non-relativistic limit, Class. Quant. Grav. 32 (2015) 205003 [arXiv:1505.02095] [INSPIRE].
E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan supergravity with torsion and Schrödinger supergravity, JHEP 11 (2015) 180 [arXiv:1509.04527] [INSPIRE].
G. Knodel, P. Lisbao and J.T. Liu, Rigid Supersymmetric Backgrounds of 3-dimensional Newton-Cartan Supergravity, JHEP 06 (2016) 028 [arXiv:1512.04961] [INSPIRE].
B. Julia and H. Nicolai, Null Killing vector dimensional reduction and Galilean geometrodynamics, Nucl. Phys. B 439 (1995) 291 [hep-th/9412002] [INSPIRE].
E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Coupling Supersymmetric Yang-Mills Theories to Supergravity, Phys. Lett. B 116 (1982) 231 [INSPIRE].
E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].
T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].
T.T. Dumitrescu and G. Festuccia, Exploring Curved Superspace (II), JHEP 01 (2013) 072 [arXiv:1209.5408] [INSPIRE].
J.M. Figueroa-O’Farrill, On the supersymmetries of Anti-de Sitter vacua, Class. Quant. Grav. 16 (1999) 2043 [hep-th/9902066] [INSPIRE].
T. Ort́ın, Gravity and Strings, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2nd ed. (2015) [DOI] [INSPIRE].
C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann Structures and Newton-cartan Theory, Phys. Rev. D 31 (1985) 1841 [INSPIRE].
J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].
R. Auzzi, S. Baiguera, G. Nardelli and S. Penati, Renormalization properties of a Galilean Wess-Zumino model, JHEP 06 (2019) 048 [arXiv:1904.08404] [INSPIRE].
J.-M. Levy-Leblond, Nonrelativistic particles and wave equations, Commun. Math. Phys. 6 (1967) 286 [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].
C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].
E. Bergshoeff, A. Chatzistavrakidis, L. Romano and J. Rosseel, Newton-Cartan Gravity and Torsion, JHEP 10 (2017) 194 [arXiv:1708.05414] [INSPIRE].
D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford University Press (2017).
K.T. Grosvenor, J. Hartong, C. Keeler and N.A. Obers, Homogeneous Nonrelativistic Geometries as Coset Spaces, Class. Quant. Grav. 35 (2018) 175007 [arXiv:1712.03980] [INSPIRE].
N. Lambert and M. Owen, Non-Lorentzian Field Theories with Maximal Supersymmetry and Moduli Space Dynamics, JHEP 10 (2018) 133 [arXiv:1808.02948] [INSPIRE].
N. Lambert, A. Lipstein, R. Mouland and P. Richmond, Bosonic symmetries of (2, 0) DLCQ field theories, JHEP 01 (2020) 166 [arXiv:1912.02638] [INSPIRE].
K. Jensen, Anomalies for Galilean fields, SciPost Phys. 5 (2018) 005 [arXiv:1412.7750] [INSPIRE].
I. Arav, S. Chapman and Y. Oz, Non-Relativistic Scale Anomalies, JHEP 06 (2016) 158 [arXiv:1601.06795] [INSPIRE].
R. Auzzi, S. Baiguera and G. Nardelli, On Newton-Cartan trace anomalies, JHEP 02 (2016) 003 [Erratum ibid. 02 (2016) 177] [arXiv:1511.08150] [INSPIRE].
R. Auzzi and G. Nardelli, Heat kernel for Newton-Cartan trace anomalies, JHEP 07 (2016) 047 [arXiv:1605.08684] [INSPIRE].
R. Auzzi, S. Baiguera, F. Filippini and G. Nardelli, On Newton-Cartan local renormalization group and anomalies, JHEP 11 (2016) 163 [arXiv:1610.00123] [INSPIRE].
S. Pal and B. Grinstein, Heat kernel and Weyl anomaly of Schrödinger invariant theory, Phys. Rev. D 96 (2017) 125001 [arXiv:1703.02987] [INSPIRE].
S. Pal and B. Grinstein, Weyl Consistency Conditions in Non-Relativistic Quantum Field Theory, JHEP 12 (2016) 012 [arXiv:1605.02748] [INSPIRE].
R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav. 29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].
J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127 [hep-th/0009181] [INSPIRE].
E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP 11 (2018) 133 [arXiv:1806.06071] [INSPIRE].
E.A. Bergshoeff, J. Gomis, J. Rosseel, C. S¸im¸sek and Z. Yan, String Theory and String Newton-Cartan Geometry, J. Phys. A 53 (2020) 014001 [arXiv:1907.10668] [INSPIRE].
J. Figueroa-O’Farrill and A. Santi, Spencer cohomology and 11-dimensional supergravity, Commun. Math. Phys. 349 (2017) 627 [arXiv:1511.08737] [INSPIRE].
P. de Medeiros, J. Figueroa-O’Farrill and A. Santi, Killing superalgebras for Lorentzian four-manifolds, JHEP 06 (2016) 106 [arXiv:1605.00881] [INSPIRE].
J. Figueroa-O’Farrill and A. Santi, On the algebraic structure of Killing superalgebras, Adv. Theor. Math. Phys. 21 (2017) 1115 [arXiv:1608.05915] [INSPIRE].
P. de Medeiros, J. Figueroa-O’Farrill and A. Santi, Killing superalgebras for Lorentzian six-manifolds, J. Geom. Phys. 132 (2018) 13 [arXiv:1804.00319] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2005.09001
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bergshoeff, E., Chatzistavrakidis, A., Lahnsteiner, J. et al. Non-relativistic supersymmetry on curved three-manifolds. J. High Energ. Phys. 2020, 175 (2020). https://doi.org/10.1007/JHEP07(2020)175
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2020)175