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1 Introduction

Recent years have seen a lot of activity in the use of localization techniques to study non-

perturbative aspects of supersymmetric Quantum Field Theories (susy QFTs). Following

the work of [1, 2], this has for instance led to the calculation of exact partition functions of

susy QFTs, defined on curved backgrounds that admit one or more Killing spinors. These

Killing spinors then serve as parameters of the supersymmetry transformation rules that

leave susy QFTs on the considered backgrounds invariant. The Lagrangian and transfor-

mation rules of susy QFTs on curved backgrounds generically contain various terms, in

which the matter fields are non-minimally coupled to the background metric. Although

these terms can in principle be obtained by applying the Noether procedure to minimally

coupled theories, constructing susy QFTs in this way tends to be rather cumbersome in

practice. A less involved and more insightful way to obtain susy QFTs on curved back-

grounds was developed by Festuccia and Seiberg in [3] and consists of applying a rigid
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decoupling limit to matter field theories, that are coupled to off-shell supergravity. Build-

ing on this result, a better geometric understanding of the backgrounds on which susy QFTs

can be defined, as well as further applications of supersymmetric localization techniques,

have been obtained (see [4] for a review).

As mentioned above, the rigid supersymmetry parameters of susy QFTs on curved

backgrounds are determined as solutions of Killing spinor equations. In [3], these Killing

spinor equations are obtained by setting the supersymmetry transformations of the fermions

of the off-shell supergravity multiplet equal to zero. The equations thus obtained take the

schematic form1

DM ε+
(
BΓ
)
M
ε = 0 . (1.1)

Here, ε is the supersymmetry parameter, DM is a covariant spinor derivative and
(
BΓ
)
M

denotes a background one-form, that is matrix-valued in spinor space and that depends on

gamma matrices as well as the bosonic fields of the off-shell supergravity multiplet. Classify-

ing classical backgrounds, on which susy QFTs can be formulated, then involves classifying

the bosonic off-shell supergravity field configurations for which the equations (1.1) have

non-trivial solutions for ε. In particular, when restricting to field configurations for which

only the metric field is non-trivial, eq. (1.1) reduces to

DM ε = 0 . (1.2)

Under this restriction, susy QFTs can therefore only be defined on backgrounds that ad-

mit one or more covariantly constant spinors. Demanding the existence of a covariantly

constant spinor constrains the geometry of a background to be Ricci-flat. This thus singles

out tori T 4 and K3 surfaces, when restricting to compact Euclidean four-manifolds.

In order to obtain more general manifolds on which susy QFTs can be defined, one

needs to consider off-shell supergravity backgrounds in which (e.g. auxiliary) fields other

than the metric are turned on, such that eq. (1.1) admits non-trivial solutions for ε. Once

such backgrounds are found, one can consider off-shell matter-coupled supergravity theories

on them and take the rigid limit that freezes out the fluctuations of the supergravity fields

around their background values. Taking this limit in the Lagrangian and supersymmetry

transformation rules then leads to the Lagrangian and transformation rules of susy QFTs

in non-dynamical curved backgrounds. The background values of the auxiliary fields of the

supergravity multiplet are responsible for the non-minimal couplings that are necessary to

maintain supersymmetry on a curved manifold.

Most of the developments mentioned above are concerned with the Euclidean case. In

the non-Euclidean case, the literature mainly deals with relativistic backgrounds, i.e. man-

ifolds that are equipped with a non-degenerate Lorentzian metric [5, 6]. Recent develop-

ments in non-relativistic holography [7–13] and effective field theory methods for strongly

1This assumes that the gravitini are the only fermionic fields in the supergravity multiplet. In case the

supergravity multiplet contains extra fermionic fields, these Killing spinor equations have to be supple-

mented with algebraic ones. See also the last two paragraphs of section 3.3 for comments on the relevance

of such algebraic Killing spinor equations to non-relativistic supersymmetry discussed in this paper.
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coupled condensed matter systems [14–23] have however led to a renewed interest in non-

relativistic QFTs on curved backgrounds as well. There exist various notions of non-

relativistic differential geometry among which Newton-Cartan geometry is the prime exam-

ple [24]. Given the usefulness of susy QFTs on curved backgrounds in studying relativistic

QFTs in the non-perturbative regime, it is natural to ask whether susy QFTs on non-

trivial Newton-Cartan backgrounds can be of similar importance. In order to address this

question, one first needs to formulate susy QFTs on curved Newton-Cartan space-times.

This is the problem that we will address in this paper.2

To construct explicit examples of non-relativistic susy QFTs on curved Newton-Cartan

manifolds, one could in principle apply the technique of [3] to matter field theories cou-

pled to non-relativistic off-shell supergravity. In this regard, it is useful to point out that

currently not much is known about non-relativistic off-shell supergravity. The only non-

relativistic supergravity multiplets considered so far are three-dimensional ones. The orig-

inal three-dimensional Newton-Cartan supergravity theory of [27] is on-shell in the sense

that the supersymmetry algebra only closes upon imposition of extra constraints. Some

of these constraints can be recognized as fermionic equations of motion, like in the case of

relativistic on-shell supergravity, while other constraints are geometrical constraints that

have no relativistic on-shell supergravity analog. Extensions of this on-shell theory have

been constructed, in which the supergravity algebra is realized without having to impose

fermionic equations of motion [28, 29]. However, for all these multiplets, one still needs

geometric constraints in order to close the underlying non-relativistic superalgebra on the

fields. It is at present not clear whether there exists a multiplet for which the superalgebra

closes without the use of any constraints and from which the previously mentioned mul-

tiplets could be obtained as specific truncations. In view of this, it is not clear whether

analyzing the Killing spinor equations, that stem from the supersymmetry transformations

of the fermionic fields of these multiplets, leads to the most general non-relativistic back-

grounds on which non-relativistic susy QFTs can be defined. Indeed, the authors of [30]

found that the class of allowed maximally supersymmetric and 1
2 -BPS backgrounds for one

specific non-relativistic supergravity multiplet (constructed in [28]) is rather restricted.

In this paper we will follow a different strategy and obtain non-relativistic susy QFTs

in three dimensions by performing a dimensional reduction of relativistic four-dimensional

susy QFTs over a lightlike isometry — a so-called null reduction. This is reminiscent

of how Newton-Cartan gravity in four dimensions can be obtained as a null reduction

of Einstein gravity in five dimensions [31]. As shown in [5, 6], analysis of the Killing

spinor equations, stemming from Old and New Minimal supergravity, implies that four-

dimensional relativistic backgrounds on which susy QFTs can be formulated, possess a null

Killing vector. It is this fact that we will exploit to obtain non-relativistic susy QFTs on

curved backgrounds from four-dimensional relativistic ones. For simplicity, we will restrict

ourselves in this paper to the null reduction of four-dimensional theories that are obtained

2In this paper, we will consider susy QFTs whose multiplets in the flat case correspond to representa-

tions of the super-Bargmann algebra. It would be interesting to see whether our results can be extended

to consider susy QFTs whose multiplets in the flat case are representations of other non-relativistic super-

symmetry algebras, such as e.g. super-Lifshitz algebra [25, 26].
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as a rigid limit of matter field theories coupled to Old Minimal supergravity, leaving the

New Minimal case for future work.

A particular feature of our null reduction approach is that it ultimately relies on

four-dimensional relativistic results. Nevertheless, we will be able to extract some general

lessons that we expect to hold when discussing generic non-relativistic supersymmetric

backgrounds. We will in particular pay attention to the structure of the three-dimensional

non-relativistic Killing spinor equations and see that consistency with local non-relativistic

symmetries leads one to include algebraic equations in the set of Killing spinor equations.

We will then use these non-relativistic Killing spinor equations to discuss three-dimensional

non-relativistic supersymmetric backgrounds in an intrinsically three-dimensional manner.

This analysis is technically simpler than the relativistic four-dimensional one. One could

thus also advocate combining non-relativistic geometry (of a kind that is obtainable from

null reduction) with suitable Killing spinor equations as an alternative way to obtain in-

teresting relativistic supersymmetric backgrounds via dimensional oxidation along a light-

like isometry.

This paper is organized as follows. In section 2 we collect some known results about su-

persymmetry on Lorentzian four-manifolds, obtained as a rigid limit of matter-coupled Old

Minimal supergravity. In section 3 we apply the null reduction to obtain three-dimensional

non-relativistic susy QFTs on curved backgrounds together with the Killing spinor equa-

tions that their supersymmetry parameters should satisfy. In section 4, we investigate the

conditions that various background fields have to satisfy in order for non-trivial solutions of

the non-relativistic Killing spinor equations to exist. We also discuss two classes of explicit

examples of three-dimensional non-relativistic backgrounds, on which supersymmetry can

be defined. We end with a conclusions and outlook section. There are also three appen-

dices. Appendix A summarizes the conventions used in this paper. Appendix B collects a

few technical formulae that are needed to perform the null reduction discussed in section 3.

Finally, appendix C discusses the integrability conditions for the non-relativistic Killing

spinor equations, giving an alternative derivation of some of the results of section 4.

2 Supersymmetry on Lorentzian four-manifolds

Relativistic susy QFTs on curved space-times can be obtained by taking a rigid limit of

matter-coupled off-shell supergravity theories [3]. This procedure consists of choosing a

non-trivial (i.e. non-flat) classical3 background for the metric and auxiliary fields of the

off-shell supergravity multiplet and taking the limit in which the Planck mass MP is sent

to infinity (after assigning suitable mass dimensions to the fields of the supergravity mul-

tiplet). The limit MP →∞ decouples the fluctuations of the supergravity multiplet fields

so that one is left with the matter multiplets coupled to the chosen classical background,

via minimal and typically also non-minimal coupling terms. In order for the resulting field

theory to be supersymmetric, the background fields should be such that the Killing spinor

3The classical nature of the background implies that the fermionic fields of the supergravity multiplet

assume zero background values.
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equations, obtained by setting the supersymmetry transformations of the fermionic super-

gravity multiplet fields equal to zero, admit non-trivial solutions for the supersymmetry

parameters. Since one works with off-shell supergravity these Killing spinor equations are

independent of the choice of matter fields, which greatly simplifies the search for possible

curved backgrounds on which susy QFTs can be formulated.

This limit was discussed explicitly in [3] for the case of chiral matter coupled to 4d,

N = 1 Old Minimal supergravity [32, 33] with a metric gMN ,4 and auxiliary fields {U, VM}
as bosonic components, where U is a complex scalar (with complex conjugate Ū) and VM
is a real vector. The fermionic field content of the Old Minimal supergravity multiplet

consists of a (Majorana) gravitino ψM , that is zero in a classical background. We mainly

follow the notation of [32, 33]5 but restrict to just one chiral multiplet with components

{Z, χL, H}, where Z is a dynamical complex scalar, χL a left-handed Weyl fermion and

H an auxiliary complex scalar.6 Taking the rigid limit of Old Minimal supergravity, one

obtains the following Lagrangian for a supersymmetric field theory of a chiral multiplet in

a curved four-dimensional background [3]:

E−1L = −E
−1

3
ZZ̄LSG − ∂MZ ∂M Z̄ − χ̄

(
/D − i

6
/V Γ5

)
χ+HH̄

+
1

3

(
Ū Z̄ H + U Z H̄

)
+

i

3
VM

(
Z̄∂MZ − Z∂M Z̄

)
(2.1)

+ Re
(
W ′′χ̄LχL −W ′H −WU

)
,

where

E−1LSG = −1

2
R− 1

3
UŪ +

1

3
VMVM . (2.2)

In these equations, E is the square root of minus the determinant of the metric, R the

background Ricci scalar and the Lorentz-covariant spinor derivative DMχ is defined by

DMχ =

(
∂M +

1

4
ΩM

ABΓAB

)
χ , (2.3)

with ΩM
AB the background spin connection. The function W = W (Z) depends holomor-

phically on Z and is the superpotential of the theory. Its derivatives with respect to Z are

denoted by

W ′ =
dW

dZ
, W ′′ =

d2W

dZ2
. (2.4)

4Curved indices M , N , · · · are raised and lowered using the background metric gMN .
5Note that this notation is different from the one used in [3], leading to different prefactors compared to

the results of [3].
6Their complex conjugate, anti-chiral counterparts will be denoted by {Z̄, χR, H̄}. We will also often

combine a left-handed spinor χL and a right-handed one χR into a Majorana spinor χ, defined as χ =

χL + χR.
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The Lagrangian (2.1) is then invariant under the following supersymmetry transformation

rules

δZ = ε̄LχL ,

δχL =
1

2
/∂ZεR +

1

2
HεL ,

δH = ε̄R

(
/D − i

6
/V

)
χL −

U

3
ε̄LχL , (2.5)

provided that the rigid supersymmetry parameters εL/R that appear in (2.5) are solutions

of the following Killing spinor equations

DM εL +
i

2
VM εL +

1

6
ŪΓM εR −

i

6
ΓM /V εL = 0 ,

DM εR −
i

2
VM εR +

1

6
UΓM εL +

i

6
ΓM /V εR = 0 . (2.6)

The Killing spinor equations (2.6) are obtained by requiring that supersymmetry preserves

the chosen classical background for the Old Minimal supergravity multiplet. Since the

background value of the gravitino is zero, the only non-trivial conditions that arise from

this requirement, are obtained by setting the gravitino supersymmetry transformation rule,

evaluated on the background, equal to zero. This then leads to (2.6). One can explicitly

check that the Lagrangian (2.1) is invariant under the transformation rules (2.5) provided

that the Killing spinor equations (2.6) hold.

Requiring that the Killing spinor equations (2.6) have non-trivial solutions leads to

constraints on the background geometry and the auxiliary fields {VM , U , Ū}. Before

discussing this in more detail, it is worth pointing out that many results in the literature [34,

35] are strictly speaking only valid for Euclidean backgrounds, while in this paper we are

interested in Lorentzian backgrounds. The difference between the Euclidean and Lorentzian

cases manifests itself in the reality conditions that are imposed on the background values

of the auxiliary fields VM and U , Ū . In the Euclidean case, the background value VM
is allowed to be complex while U and Ū are allowed to correspond to two independent

complex background scalars. Likewise, the Killing spinors εL and εR are treated as two

independent Weyl spinors and the equations (2.6) are independent. In contrast, for the

Lorentzian case one has to impose that VM is real, that Ū is the complex conjugate of U

and that the spinors εL, εR are chiral projections of a Majorana spinor ε = εL + εR and

thus related via complex conjugation. This, in turn, implies that the equations (2.6) are

not independent but instead are each other’s complex conjugate.

We may assume that the Lagrangian (2.1) and the supersymmetry transformation

rules (2.5) hold for both the Euclidean and Lorentzian cases as long as we assume that the

auxiliary background fields and Killing spinors obey the appropriate reality conditions. The

analysis of the Killing spinor equations (2.6) that determines the allowed supersymmetric

backgrounds depends more subtly on the signature of the background space-time and on

the ensuing reality properties of the auxiliary background fields. The Lorentzian case was

– 6 –
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previously discussed in [5, 6]7 and we briefly summarize some important parts and results

of this analysis below.

When solving the Killing spinor equations (2.6), it suffices to look for solutions that

are commuting Majorana spinors. Note that the physical fermions {χL, χR} are anti-

commuting and that consequently the parameters εL, εR of the supersymmetry transfor-

mations (2.5) should be anti-commuting as well. Once one has however obtained a basis

{ζ(i) = ζ
(i)
L + ζ

(i)
R |i = 1, · · · , n} of n commuting Majorana solutions of (2.6), one can use

linearity of (2.6) to construct generic supersymmetry parameters ε as linear combinations

of the ζ(i), with constant, real Grassmann variables as coefficients:

ε =

n∑
i=1

θ(i)ζ
(i) , with θ(i)θ(j) = −θ(j)θ(i) , θ

∗
(i) = θ(i) . (2.7)

In the following, we will use the Greek letter ζ to denote commuting solutions of Killing

spinor equations, while the letter ε will be reserved for the associated anti-commuting

supersymmetry parameters.

Assuming the existence of commuting solutions of (2.6), one can derive geometric

restrictions that should be obeyed by backgrounds on which susy QFTs can be defined.

One important restriction on the allowed backgrounds is that they admit a null Killing

vector. Indeed, the existence of a non-trivial commuting Killing spinor ζ = ζL + ζR allows

one to define the following real vector

KM = i ζ̄ ΓMζ = 2i ζ̄LΓMζR , which obeys KMK
M = 0 (2.8)

as a consequence of Fierz relations. Moreover, using the Killing spinor equations (2.6), one

can show that [5]

∇(MKN) = 0 and K[M∇NKP ] = 2 εMNP
QKQK

SVS , (2.9)

where VS is the real auxiliary vector of the Old Minimal supergravity multiplet. We thus

see that KM is a null Killing vector, whose associated one-form KM = gMNK
N is non-

integrable (i.e. K[M∂NKR] 6= 0), unless KMV
M = 0.

More generally, given a basis {ζ(i)|i = 1, · · · , n} of commuting solutions of (2.6), one

can show that the vectors

KM
(ij) = iζ̄(i)ΓMζ(j) , (2.10)

are Killing vectors and thus correspond to isometries of the background. The generators

of these isometries determine the anti-commutators of the supercharges of the rigid super-

algebra that is preserved by the background. Let us illustrate this in case there is one

commuting solution ζ = ζL + ζR of the Killing spinor equation (2.6). Associated to this

solution, one can construct the supercharge Q(ζ), that generates supersymmetry trans-

formations (2.5), whose parameters are of the form ε = θζ, where θ is a real, constant

Grassmann variable

δ(ε = θζ) = θQ(ζ) . (2.11)

7See [3, 35] for analogous results in Euclidean signature.
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Calculating the commutator of two such supersymmetry transformations δ(ε1,2 = θ1,2ζ)

(with θ1,2 two independent anti-commuting variables) on the fields Z, H and χ, one obtains

[δ(ε1), δ(ε2)] = − i

2
θ2θ1LK , (2.12)

where LK is the Lie-Lorentz derivative [36, 37] along the Killing vector KM defined in (2.8).

This Lie-Lorentz derivative acts as an ordinary Lie derivative on the scalar fields Z, H

and as

LKχ = KMDMχ−
1

4
(DAKB) ΓABχ , (2.13)

on the spin-1/2 fermionic field χ. One thus sees that, in case there is only one solution

ζ to the Killing spinor equations (2.6), the part of the preserved rigid superalgebra that

involves the associated single supercharge Q(ζ) is given by

{Q(ζ), Q(ζ)} = − i

2
LK and [Q(ζ), LK ] = 0 . (2.14)

Equations (2.8) and (2.9) show that a necessary condition for a background to allow for

supersymmetry is the existence of a (globally defined) null Killing vector. Hence the set of

product manifolds

R1,1 ×M2 , (2.15)

with M2 being an arbitrary two-manifold, provides a large class of candidate solutions.

There are other known consistent backgrounds that do not fall into this class. Two such

backgrounds, that preserve maximal supersymmetry, are given by AdS4 and R× S3. The

Euclidean versions of these backgrounds have been constructed in [3]. The AdS4 case

was also discussed for Lorentzian signature in [5]. The R × S3 background is an example

where the one-form KM is not integrable. We will consider non-relativistic supersymmetric

manifolds that are reminiscent of these backgrounds in section 4.4.

3 Non-relativistic geometry from relativistic geometry

In order to obtain a matter-coupled non-relativistic susy QFT in three dimensions — given

by a Lagrangian, supersymmetry transformations and appropriate Killing spinor equations

for the supersymmetry parameters — we apply a dimensional reduction along a lightlike

isometry. As we saw above, any background that admits at least one solution of the Killing

spinor equations (2.6), has a null Killing vector KM . We can describe the background

geometry in coordinates that are adapted to this null Killing vector: xM = {xµ, v}, with

µ = 0, 1, 2, such that KM∂M = ∂v. In these coordinates, the most general metric for which

KM is a null Killing vector, can be described in terms of the following (inverse) Vielbein

EM
A (EMA):

EM
A =

( a − +

µ eµ
a τµ −mµ

v 0 0 1

)
, EMA =


µ v

a eµa eµamµ

− τµ τµmµ

+ 0 1

 , (3.1)

– 8 –
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where the flat indices A = {a,+,−} refer to a null basis. The eµa, τ
µ that appear in the

Ansatz for the inverse Vielbein EMA are projective inverses of eµ
a, τµ, i.e. they obey

τµτµ = 1 , τµeµ
a = 0 , eµaτµ = 0 ,

eµaeµ
b = δba , eµae

a
ν = δµν − τµτν . (3.2)

The eµ
a, τµ and mµ are independent of the v-coordinate for KM to be a Killing vec-

tor. The form of the Vielbein (3.1) then corresponds to the Vielbein Ansatz that is used

when performing a null reduction of the Einstein equations [31, 38]. The local space-time

symmetries that are preserved in such a reduction, are given by the little group of the

null Killing vector KM . The Lie algebra of the little group of a null vector is given by

the Bargmann algebra, the central extension of the algebra of Galilean space-time sym-

metries. One thus finds that local inertial frames in the lower-dimensional geometry are

connected via Bargmann symmetries or in other words that the lower-dimensional geome-

try is Newton-Cartan. The quantities eµ
a and τµ then correspond to the spatial Vielbein

and time-like Vielbein of a three-dimensional Newton-Cartan geometry. The field mµ is a

gauge field for the Bargmann U(1)-central charge symmetry with parameter β:

δmµ = ∂µβ . (3.3)

From the null reduction viewpoint, this symmetry can be seen as stemming from infinites-

imal diffeomorphisms in the v-direction and its associated conserved charge is given by

mass/particle number conservation. The field mµ is a crucial ingredient in the Vielbein

formulation of Newton-Cartan geometry [38]. Starting from the Vielbein Ansatz (3.1), one

can reduce other geometric quantities, such as the spin connection. Results for this are

collected in appendix B.

The auxiliary scalar U and vector field VM are also taken as independent of the

v-coordinate. We will rename

u ≡ U , (3.4)

to distinguish the three-dimensional scalar u from the four-dimensional one U . It is con-

venient to redefine the reduced vector field VM as follows

vµ ≡ Vµ +mµ Vv = Vµ +mµv , v ≡ Vv . (3.5)

In this way, vµ and v are inert under the U(1)-central charge with parameter β, as are eµ
a,

τµ and u.

For future reference, we note that Galilean boosts with infinitesimal parameter λa act

as follows on the Newton-Cartan (inverse) Vielbeine and central charge gauge field:

δτµ = 0 , δeµ
a = λaτµ , δmµ = −λaeµa ,

δτµ = −λaeµa , δeµa = 0 . (3.6)

The fields u and v are inert under boosts, while vµ transforms as

δvµ = −λaeµav . (3.7)

– 9 –
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We will regularly turn three-dimensional lower indices µ, ν on tensors into flat indices

0, a, (a = 1, 2), according to the rule

X0 = τµXµ , Xa = eµaXµ . (3.8)

The a index can be freely raised and lowered using a Kronecker delta. We will take

X0 = −X0.

3.1 Scherk-Schwarz null reduction

The easiest way to perform the null reduction for the matter multiplet consists of using

the Ansatz (3.1) and assuming that the (anti-)chiral multiplet fields are v-independent.

It is easy to see that this leads to a Lagrangian without time derivatives for the physi-

cal scalars, such that these scalars obey Poisson-type equations of motion. We will not

discuss this case further; instead we will focus on a reduction that leads to dynamical

fields that obey Schrödinger-type equations of motion. This can be achieved by performing

a twisted or Scherk-Schwarz reduction [39]. Such a reduction can be applied whenever

the higher-dimensional theory has a global symmetry. One can then propose an Ansatz

in which the higher-dimensional fields are expressed as symmetry transformations of the

lower-dimensional fields, where the symmetry transformations depend on the internal coor-

dinates. Invariance of the higher-dimensional theory under the symmetry then guarantees

that this is a consistent reduction Ansatz, i.e. that the dependence on the internal coordi-

nates drops out when plugging the Ansatz into the higher-dimensional quantities.

In order to perform the Scherk-Schwarz reduction, we will assume that the

Lagrangian (2.1) exhibits the following global U(1)-symmetry, with parameter α:

δZ = iαZ , δχL = iαχL , δH = iαH . (3.9)

This happens when the superpotential W is zero and we will thus take W = 0 from now

on.8 We can then use this U(1)-symmetry to perform the twisted null reduction. We

thus propose the following Ansatz for the bosonic chiral multiplet fields in terms of three-

dimensional scalars z(xµ), h(xµ):

Z(xµ, v) = e−im vz(xµ) , H(xµ, v) = e−im vh(xµ) . (3.10)

In order to give the reduction Ansatz for the fermion χL, χR, we adopt a decomposition of

the four-dimensional Clifford algebra in terms of the three-dimensional one, discussed in

appendix B. We then propose the following reduction Ansatz

χL(xµ, v) = e−im v
(
πψ+(xµ)⊗ ϕ− + π̄ψ−(xµ)⊗ ϕ+

)
, (3.11a)

χR(xµ, v) = e+im v
(
π̄ψ+(xµ)⊗ ϕ− + πψ−(xµ)⊗ ϕ+

)
. (3.11b)

8Note that choosing W = 0 excludes interesting interaction terms. This restriction can however be lifted

by e.g. introducing extra chiral multiplets such that a U(1)-invariant superpotential can be engineered. This

was for instance done in [40] to obtain an interacting non-relativistic Wess-Zumino model in flat space via

Scherk-Schwarz null reduction of a relativistic one.
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Here ψ± are three-dimensional Majorana spinors (obeying the three-dimensional Majorana

condition ψ∗± = iC3γ
0ψ±) and ϕ+ = (1, 0)T and ϕ− = (0, 1)T obey

σ±ϕ± = 0 and σ±ϕ∓ =
√

2ϕ± , (3.12)

with the matrices σ± defined in (B.11). In (3.11), we have used the three-dimensional

operators π, π̄, that are defined as

π =
1

2

(
12 − iγ0

)
and π̄ =

1

2

(
12 + iγ0

)
. (3.13)

Since
(
iγ0

)2
= 12 these operators are projectors, that satisfy iγ0π = −π and iγ0π̄ = π̄.

With a slight abuse of terminology, we will refer to {πψ+, π̄ψ−} as (pseudo-)left-handed

fermions and to {π̄ψ+, πψ−} as (pseudo-)right-handed fermions, alluding to their four-

dimensional origin. Note that these pseudo-right-handed and pseudo-left-handed fermions

are no longer Majorana, but are instead complex one-component spinors.

As mentioned above, when performing the null reduction, one finds that the lower-

dimensional local symmetries span the Bargmann algebra, that includes local spatial rota-

tions, local Galilean boosts and a local U(1)-central charge transformation, for which mµ is

a gauge field (see (3.3)). This local U(1)-central charge that is associated to mass/particle

number conservation acts on the three-dimensional fields z(x), ψ±(x), h(x) as follows:

δU(1)z(x) = imβ z(x) , δU(1)ψ±(x) = ±mβ γ0 ψ±(x) ,

δU(1)h(x) = imβ h(x) . (3.14)

The reduction of the four-dimensional (anti-)chiral multiplet {Z, χL, H} ({Z̄, χR, H̄})
then leads to a three-dimensional pseudo-(anti-)chiral multiplet {z, πψ+, π̄ψ−, h} ({z̄, π̄ψ+,

πψ−, h̄}). In the following, we will use covariant derivatives ∇̄µ in three dimensions,

that are covariantized with respect to local rotations, Galilean boosts and the U(1)-

transformations (3.14). When acting on the physical fields of the three-dimensional pseudo-

chiral multiplet, these derivatives are defined as follows:

∇̄µz = ∂µz − immµz , (3.15a)

∇̄µπψ+ = ∂µπψ+ − immµπψ+ +
1

4
ωµ

abγabπψ+ , (3.15b)

∇̄µπ̄ψ− = ∂µπ̄ψ− − immµπ̄ψ− +
1

4
ωµ

abγabπ̄ψ− −
i
√

2

2
ωµ

aγaπψ+ , (3.15c)

where the spin connections ωµ
ab, ωµ

a for local spatial rotations and Galilean boosts depend

on τµ, eµ
a, mµ. Their explicit expressions can be found in eq. (B.2). Similar expressions

can be obtained by complex conjugation for the fields of the pseudo-anti-chiral multiplet.

3.2 Multiplets and Lagrangian

In this section, we will construct an explicit example of a non-relativistic susy QFT, coupled

to an arbitrary curved Newton-Cartan background. The resulting theory is a supersymmet-

ric extension of a field theory for a scalar, that obeys a curved space Schrödinger equation.
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The fermions obey a Levy-Leblond equation [41] — which can be seen as the square root

of the Schrödinger equation, similar to how the Dirac equation can be viewed as the square

root of the Klein-Gordon equation. It has been proposed recently [40], that an interact-

ing version of this theory in flat space is one-loop exact. We opted to consider only one

pseudo-chiral multiplet for pedagogical reasons. The generalization to an arbitrary num-

ber of pseudo-chiral multiplets, with arbitrary Kähler potentials and potentially non-zero

superpotentials, is straightforward.

Applying the above Ansätze to eq. (2.1), we find the following Lagrangian

(det(ea, τ))−1 L =

(
1

12
εabRab (J)− 1

3
τa0τa0 +

1

9
ūu− 1

9
hµνvµvν +

2

9
vτµvµ

)
zz̄

− hµν∇̄µz ∇̄ν z̄ + imτµ
(
z̄∇̄µz − z∇̄µz̄

)
+ hh̄

− eµaψ̄−γa∇̄µψ+ − eµaψ̄+γa∇̄µψ− +
√

2 τµψ̄+γ0

(
∇̄µ −

1

6
vµγ0

)
ψ+

−m
√

2 ψ̄−ψ− +

√
2

8

(
τabεab −

4

3
v

)
ψ̄−ψ− +

1

2

(
τa0 +

2

3
εabvb

)
ψ̄+γaψ−

+
1

3

(
ū z̄ h+ u z h̄

)
+

i

3
(hµνvν − vτµ)

(
z̄∇̄µz − z∇̄µz̄

)
− 2

3
v0mzz̄ .

(3.16)

Here, the notation det(ea, τ) refers to the determinant of a (3 × 3)-matrix, obtained by

putting eµ
a and τµ in its columns. We have also defined the so-called spatial metric of

Newton-Cartan geometry hµν as hµν = eµaeνa. The notation τab, resp. τ0a refers to the

spatial, resp. time-like parts of the curl of τµ

τab = 2eµae
ν
b∂[µτν] , τ0a = 2τµeνa∂[µτν] . (3.17)

The curvature of spatial rotations Rµν(J) that appears in the first term is defined in

eq. (B.4).

The reduction of the four-dimensional supersymmetry transformation rules leads to

the following supersymmetry transformation rules for the pseudo-(anti-)chiral multiplet

δz = ε̄+π̄ψ− + ε̄−πψ+ ,

δπψ+ =
1

2
eµaγaπ̄ε+∇̄µz +

1

2
hπε+ +

im√
2
z γ0πε− ,

δπ̄ψ− =
1

2
eµaγaπε−∇̄µz +

1

2
hπ̄ε− −

1√
2
τµ γ0π̄ε+∇̄µz , (3.18)

δh = eµaε̄−γa

(
∇̄µ −

1

6
vµγ0

)
πψ+ + eµaε̄+γa

(
∇̄µ +

1

6
vµγ0

)
π̄ψ−

−
√

2 τµ ε̄+γ0

(
∇̄µ −

1

6
vµγ0

)
πψ+ −

u

3
(ε̄+π̄ψ− + ε̄−πψ+)

+m
√

2 ε̄−π̄ψ− −
√

2

8

(
τabεab −

4

3
v

)
ε̄−π̄ψ−

− 1

4
τa0 (ε̄−γaπψ+ + 3 ε̄+γaπ̄ψ−) .
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Here, it is understood that (ε+, ε−) solves the Killing spinor equations, given in the next

section. The Lagrangian (3.16) is then invariant under (3.18) up to total derivatives, when

using the modified rule for partial integration (B.9).

3.3 Killing spinor equations for non-relativistic supersymmetry

In order to establish the coupling to concrete backgrounds, we consider the Killing spinor

equations obtained from the null reduction of eqs. (2.6). It is worth mentioning, that

the supercharges (ε+, ε−) have charge zero under the U(1)-central charge transformation,

hence the reduction is to be understood as an ordinary null reduction. This leads to four

independent equations, two of which are purely algebraic:

4 v γ0ε+ + τabγabε+ = 0 , (3.19a)

vγ0ε− −
3

4
τabγabε− −

3
√

2

2
τa0γa0ε+ +

√
2 vaγ

aε+

−
√

2 Re(u)γ0ε+ +
√

2 Im(u)ε+ = 0 , (3.19b)

and two of which are differential equations

∇̄µε+ = −1

4
τµ

0ε+ −
√

2

4
τµ
aγa0ε− −

1

2
vµγ0ε+ +

1

6
eµ
avbγaγ

bγ0ε+ +
1

3
τµv0γ0ε+

−
√

2

6
τµvaγ

aε− −
√

2

6
v eµ

aγaε− −
1

6
Re(u) eµ

aγaε+ −
√

2

6
Re(u) τµγ0ε−

− 1

6
Im(u)eµ

aγa0ε+ −
√

2

6
Im(u)τµε− , (3.20a)

∇̄µε− = +
1

4
τµ

0ε− +
1

2
vµγ0ε− −

1

6
eµ
avbγaγ

bγ0ε− +

√
2

6
eµ
av0γaε+

− 1

6
Re(u) eµ

aγaε− +
1

6
Im(u) eµ

aγa0ε− , (3.20b)

where the covariant derivatives on ε± are explicitly given by

∇̄µε+ = ∂µε+ +
1

4
ωµ

abγabε+ ,

∇̄µε− = ∂µε− +
1

4
ωµ

abγabε− −
√

2

2
ωµ

aγa0ε+ . (3.21)

This set of two algebraic and two differential Killing spinor equations is invariant under

local Galilean boosts, under which the background fields and spin connections transform

as in eqs. (3.6), (3.7), (B.3), and under which ε± transform as

δε+ = 0 , δε− = −
√

2

2
λaγa0ε+ . (3.22)

The boost invariance of this set of equations is slightly non-trivial. One can show that under

boosts the second algebraic Killing spinor equation (3.19b) transforms to the first algebraic

one (3.19a). The first differential Killing spinor equation (3.20a) transforms to the first

algebraic one (3.19a). The second differential Killing spinor equation (3.20b) transforms

– 13 –



J
H
E
P
0
7
(
2
0
2
0
)
1
7
5

to a combination of the first differential one (3.20a) and the second algebraic one (3.19b).

While the inclusion of algebraic equations as part of the non-relativistic Killing spinor

equations might seem strange at first, one sees that they are necessary to obtain a set of

equations that is invariant under these local Galilean boosts.

It is worth comparing this null reduction of the Killing spinor equations with a re-

duction of the four-dimensional Killing spinor equations along a spatial isometry [34, 42].

Also in the latter case, dimensional reduction leads to a set of differential and a set of al-

gebraic Killing spinor equations. In that case however, all three-dimensional Killing spinor

equations are Lorentz-covariant on their own and the algebraic Killing spinor equations

decouple from the differential ones in the sense that one only needs to consider the latter

when determining which backgrounds admit Killing spinors. The underlying reason for

this is that after spatial reduction, the Old Minimal supergravity multiplet gives a fully

reducible representation of the three-dimensional super-Poincaré algebra and splits into

the three-dimensional supergravity multiplet and an extra matter multiplet that can be

truncated. The differential Killing spinor equations then correspond to the supersymmetry

transformations of the gravitini of the off-shell supergravity multiplet. The algebraic ones

on the other hand correspond to the supersymmetry transformation rules of the fermions

of the matter multiplet and hence do not need to be considered when looking for suitable

Killing spinors.

This conclusion changes when considering a reduction along a lightlike direction. In

that case the four-dimensional supergravity multiplet reduces to an indecomposable re-

ducible representation of the three-dimensional super-Bargmann algebra and no longer

splits nicely into a three-dimensional supergravity multiplet and an extra matter multi-

plet. Fields that would sit in a matter multiplet upon spatial reduction no longer do so

upon null reduction, as they can be linked by Galilean boosts to other supergravity mul-

tiplet fields. It is for this reason that the boost transformation of the differential Killing

spinor equations leads to the algebraic ones and that we keep the algebraic equations in

order to perform the most general analysis of which non-relativistic backgrounds preserve

supersymmetry.

4 Solutions

In the above section, we found a set of algebraic and differential equations that the non-

relativistic Killing spinors obey. One is able to define supersymmetry on a given back-

ground, whenever these Killing spinor equations in this background admit non-trivial,

nowhere vanishing,9 solutions. Indeed, in that case one can use these solutions as a basis for

the supersymmetry parameters appearing in (3.18). Since some of the Killing spinor equa-

tions are partial differential equations, they do not exhibit non-trivial solutions for all possi-

ble backgrounds. The allowed backgrounds for instance have to comply with the integrabil-

ity conditions for the differential Killing spinor equations and there might also be topolog-

ical obstructions to the existence of suitable Killing spinors. In this section, we will inves-

9In practice, the requirement that the solution is nowhere vanishing is often automatic if the solution is

non-trivial; see the discussion around equation (4.4).
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tigate the constraints that backgrounds have to obey, such that non-trivial non-relativistic

Killing spinors can be found. We will also give some examples of such backgrounds.

In identifying the allowed backgrounds, we will adapt techniques that are similar to

the ones used in the relativistic four-dimensional case [3, 5, 6, 34, 35, 43] to the situation

at hand, e.g. taking into account that we now also have algebraic Killing spinor equa-

tions. This will lead to conditions on the backgrounds that are necessary and sufficient for

the Killing spinor equations to have non-trivial solutions. Necessary conditions can also

be obtained from studying the integrability conditions for the Killings spinor equations.

These integrability conditions are often useful for practical purposes, e.g. when analyzing

particular backgrounds. For this reason, we have discussed them in detail in appendix C.

The analysis of the integrability conditions offers an alternative viewpoint to the results

of subsections 4.1 and 4.2 and on top of that it provides some additional explicit formulas

that are useful in the examples of subsection 4.4.

As in the four-dimensional case discussed in section 2, we will be interested in com-

muting solutions (ζ+, ζ−) of (3.19a)–(3.20b). Given a basis of nowhere vanishing solu-

tions
{(
ζ

(i)
+ , ζ

(i)
−

)
|i = 1, · · · , n

}
(where 1 ≤ n ≤ 4), the rigid supersymmetry parameters

(ε+ = θζ+, ε− = θζ−) can then be constructed by multiplying these basis solutions with

arbitrary constant Grassmann parameters θ. In order to find such a basis of commuting

solutions (ζ
(i)
+ , ζ

(i)
− ), let us first note that the first algebraic Killing spinor equation (3.19a)

evaluated on a generic solution (ζ+, ζ−), is equivalent to(
4 v + τabεab

)
ζ+ = 0 . (4.1)

This equation suggests that the search for solutions can be subdivided into a case in which

one looks for solutions where ζ+ is identically zero and a case where ζ+ is not identically

zero (but 4v + τabεab is). We will now discuss both cases in turn.

4.1 The case ζ+ = 0

In this case, we are looking for Killing spinors of the form (0, ζ−), where ζ− solves the

following remaining Killing spinor equations (3.19b), (3.20a), (3.20b)(
4

3
v − τabεab

)
γ0ζ− = 0 , (4.2a)(

3

2
τµ
aγa0 + eµ

avγa + τµv
aγa + Re(u)τµγ0 + Im(u)τµ

)
ζ− = 0 , (4.2b)

Dµζ− =

(
1

4
τµ

0 +
1

2
vµγ0 −

1

6
eµ
avbγaγ

bγ0 −
1

6
Re(u) eµ

aγa

+
1

6
Im(u) eµ

aγa0

)
ζ− , (4.2c)

with

Dµζ− = ∂µζ− +
1

4
ωµ

abγabζ− . (4.3)
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Note in particular that the first differential Killing spinor equation (3.20a) has turned into

an algebraic equation.

Before discussing the constraints on the background geometry and auxiliary fields that

follow from requiring the existence of non-trivial solutions of eqs. (4.2a)–(4.2c), let us first

note that one can reasonably assume that any non-trivial solution ζ− of these equations is

nowhere vanishing. Indeed, the differential equation (4.2c) is of the form

∂µζ− = Bµζ− , (4.4)

where Bµ is a Clifford algebra valued operator that involves geometric quantities and

auxiliary fields. Suppose then that there exists a point p, where ζ− is zero (ζ−|p = 0).

Equation (4.4) then implies that also ∂µζ−|p = 0. Similarly, by taking successive partial

derivatives of (4.4), one can iteratively infer that all partial derivatives of ζ− vanish at p.

If ζ−|p = 0, we thus find that the Taylor series of ζ− around p vanishes identically and

consequently, assuming reasonable analyticity properties for ζ−, that ζ− is given by the

trivial zero solution. Non-trivial solutions for ζ− can therefore be assumed to be nowhere

vanishing and we will do so in the following.

With this in mind, we can discuss the conditions under which the equations (4.2a)–

(4.2c) admit non-trivial solutions. We can phrase these conditions in the form of the

following theorem, which is the basic result of this subsection.

Theorem 1. The equations (4.2a)–(4.2c) have one non-trivial globally well-defined solution

for ζ− if and only if there exists a globally well-defined unit vector X−a such that the following

conditions hold:10

εabτab =
4

3
v , (4.5a)

τ0a =
2

3

(
−εabvb + Re(u)X−a − Im(u)Y −a

)
, (4.5b)

vµ = τµY
−aD0X

−
a +

1

2
eµ
a
(

3Y −bDaX
−
b + Re(u)Y −a + Im(u)X−a

)
, (4.5c)

where Y −a = εabX
−b and DµX

−
a = ∂µX

−
a + ωµa

bX−b . There are two independent globally

well-defined solutions for ζ− if and only if there exists a globally well-defined unit vector

X−a such that the conditions (4.5a)–(4.5c) hold with u = 0.

Proof. In order to prove this theorem, let us first assume that one globally well-defined,

nowhere vanishing, solution ζ
(1)
− of eqs. (4.2a)–(4.2c) exists and let us show that this implies

the conditions (4.5a)–(4.5c). Equation (4.2a), evaluated on this solution, is equivalent to(
4

3
v − τabεab

)
ζ

(1)
− = 0 . (4.6)

Since ζ
(1)
− is assumed to be nowhere vanishing, we thus see that (4.5a) has to hold. We can

then use this condition in equation (4.2b), evaluated on ζ
(1)
− . Doing this, one finds (after

10Note that vb = eµbvµ, which appears on the right-hand side of condition (4.5b), is fully determined by

condition (4.5c). Here we do not substitute its explicit expression for brevity.
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multiplication with τµ) that

3

2
εabτ0aγbζ

(1)
− + vaγaζ

(1)
− + Re(u)γ0ζ

(1)
− + Im(u)ζ

(1)
− = 0 . (4.7)

In order to proceed, we note that one can use the nowhere vanishing and globally well-

defined solution ζ
(1)
− to construct the following bilinears

N− = iζ̄
(1)
− γ0ζ

(1)
− , X−a =

1

N−
iζ̄

(1)
− γ0aζ

(1)
− , Y −a =

1

N−
iζ̄

(1)
− γaζ

(1)
− . (4.8)

Since N− is given by −
(
ζ

(1)
−

)†
ζ

(1)
− , it is nowhere vanishing because ζ

(1)
− is. The vectors

X−a and Y −a are thus well-defined. They are not independent; rather they are related by

X−a = −εabY −b . (4.9)

Fierz identities moreover imply that X−a and Y −a are unit vectors (and thus nowhere

vanishing)

X−aX−a = 1 , Y −aY −a = 1 , (4.10)

and that they obey

X−aγaζ
(1)
− = ζ

(1)
− , Y −aγaζ

(1)
− = γ0ζ

(1)
− . (4.11)

These properties can then be used to rewrite (4.7) as

Aaγaζ
(1)
− = 0 , where Aa =

3

2
τ0bε

ba + va + Re(u)Y −a + Im(u)X−a . (4.12)

Since ζ
(1)
− is non-trivial, this equation expresses that the matrix Aaγa is singular and thus

that its determinant is zero. Since

det(Aaγa)
2 = (AaAa)

2 , (4.13)

we thus see that (4.12) implies that Aa = 0 or in other words that (4.5b) holds. We can

then use (4.5a) and (4.5b), along with (4.11) in the differential condition (4.2c) on ζ
(1)
− ,

leading to the following equation:

Dµζ
(1)
− = C−µ γ0ζ

(1)
− ,

where C−µ =
1

2
τµv0 +

1

3
eµ
ava −

1

6
Re(u)eµ

aY −a −
1

6
Im(u)eµ

aX−a . (4.14)

Using this equation and the definitions (4.8), one can show that

∂µN
− = 0 , and DµX

−
a = 2C−µ Y

−
a . (4.15)

The latter equation implies that

C−µ =
1

2
Y −aDµX

−
a , (4.16)

which can be rewritten as the third condition (4.5c).
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Similar steps can be taken to show that (4.5a)–(4.5c) hold with u = 0, when there

exists a second solution ζ
(2)
− of eqs. (4.2a)–(4.2c), that is linearly independent from ζ

(1)
− .

Note that we can always write ζ
(2)
− as a linear combination of the eigenvectors {ζ(1)

− , γ0ζ
(1)
− }

(with eigenvalues +1 and −1 resp.) of X−aγa: ζ
(2)
− = aζ

(1)
− + bγ0ζ

(1)
− , with a, b ∈ R and

b 6= 0. Linearity of the Killing spinor equations then implies that we can take

ζ
(2)
− = γ0ζ

(1)
− (4.17)

without loss of generality and we will adopt this choice in the following. Evaluating equa-

tion (4.2a) on this second solution then again leads to (4.5a). Considering equation (4.2b),

evaluated on ζ
(2)
− , and performing manipulations similar to those that led to (4.5b), now

implies that

τ0a =
2

3

(
−εabvb − Re(u)X−a + Im(u)Y −a

)
(4.18)

should hold along with (4.5b). This is only possible when u = 0 and we thus find that (4.5b)

holds with u = 0. Using (4.5a), (4.5b) and u = 0 in the differential condition (4.2c),

evaluated on ζ
(1)
− (or, giving equivalent results, on ζ

(2)
− = γ0ζ

(1)
− ), then leads to

Dµζ
(1)
− = c−µ γ0ζ

(1)
− ,

where c−µ =
1

2
τµv0 +

1

3
eµ
ava . (4.19)

The same reasoning that led to (4.16) can then be used to show that

c−µ =
1

2
Y −aDµX

−
a , (4.20)

which is equivalent to (4.5c) with u = 0. This completes the proof that the existence of a

non-trivial globally well-defined solution of the form (0, ζ−) of the Killing spinor equations

implies the existence of a globally well-defined unit vector X−a such that eqs. (4.5a), (4.5b)

and (4.5c) hold, with u = 0 in case two such solutions exist.

Let us now prove that the reverse statement also holds and assume that (4.5a)–(4.5c)

hold for a globally well-defined unit vector X−a . Note first that eq. (4.2a) is identically

satisfied for any ζ− when (4.5a) holds. Using (4.5a) and (4.5b) in eq. (4.2b), one finds

that (4.2b), after multiplication with τµ reduces to

(Im(u) + Re(u)γ0)
(
12 −X−aγa

)
ζ− = 0 . (4.21)

If u = 0, this equation is again identically satisfied for any ζ−. When u 6= 0, the matrix

(Im(u) + Re(u)γ0) is invertible and the above equation is equivalent to

X−aγaζ− = ζ− . (4.22)

Since X−aγa is diagonalizable and has one eigenvalue 1 and one eigenvalue −1, one sees

that one can find one solution of this equation, given by an eigenvector with eigenvalue 1.

Note also that one can then recover (4.8) from (4.22), by multiplying both sides of (4.22)
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from the left with ζ̄−γb. In case u 6= 0 and ζ− obeys (4.22), plugging eqs. (4.5b), (4.5c)

and (4.22) into (4.2c), gives

Dµζ− =
1

2
Y −aDµX

−
a γ0ζ− . (4.23)

Similar manipulations show that this same equation also holds when u = 0. The spin

connection terms in the covariant derivatives of this equation can be shown to cancel, so

that one finds the following equation:

∂µζ− =
1

2
Y −a∂µX

−
a γ0ζ− =

1

2

(
X−2 ∂µX

−
1 −X

−
1 ∂µX

−
2

)
γ0ζ− . (4.24)

This equation can be integrated to yield the solution11

ζ− = exp

(
1

2
arctan

(
X−1
X−2

)
γ0

)
ζ−0 , (4.25)

where ζ−0 is a constant spinor. For u = 0, this constant spinor is unconstrained, yielding

two linearly independent solutions. In case u 6= 0, ζ−0 has to obey

γ2ζ
−
0 = sign(X−2 )ζ−0 , (4.26)

to ensure that (4.22) holds. One thus finds that there is only one solution when u 6= 0. In

this way, we have shown that the conditions (4.5a)–(4.5c) ensure that a solution of (4.2a)–

(4.2c) can be found. This solution is globally well-defined by virtue of the assumption that

X−a is globally well-defined, thus proving the theorem.

Note that we expressed the solution (4.5c) for vµ in terms of the vectors X−a , Y −a , that

are constructed from a Killing spinor. In case u 6= 0, this expression for vµ is unambiguous,

since there is only one solution ζ
(1)
− of the Killing spinor equations. In case u = 0, there

exist two independent Killing spinors ζ
(1)
− and γ0ζ

(1)
− . Since there is no canonical choice of

which Killing spinor to use to construct the vectors X−a , Y −a , one should make sure that

the expression (4.5c) with u = 0 does not depend on such a choice. This is indeed the case,

as can be seen by taking an arbitrary linear combination

χ = aζ
(1)
− + bγ0ζ

(1)
− , a, b ∈ R , (4.27)

and defining

Nχ = iχ̄γ0χ , Xχ
a =

1

Nχ
iχ̄γ0aχ , Y χ

a =
1

Nχ
iχ̄γaχ . (4.28)

One finds that Xχ
a is still a unit vector and that moreover

Y χaDµX
χ
a = Y −aDµX

−
a , (4.29)

so that the expression (4.5c) for vµ is indeed independent of the choice of Killing spinor,

when u = 0.
11Here and in the following, we take the principal value of arctan.
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When put in a background that is subject to the relations (4.5a), (4.5b), and (4.5c),

the matter multiplet (3.18) realizes a rigid superalgebra. The anti-commutator of the

supercharges closes on bosonic symmetries of the theory, i.e. isometries and local Bargmann

transformations. Let us denote the supercharges associated to solutions (0, ζ
(i)
− ) (i = 1, 2)

of the Killing spinor equations by Q(ζ
(i)
− ). In case there is only one Killing spinor (0, ζ

(1)
− ),

we find that Q(ζ
(1)
− ) satisfies the following anti-commutation relation:{
Q(ζ

(1)
− ), Q(ζ

(1)
− )
}

= −i

√
2

2

(
δU(1)(N

−)− 1

2
δG(τ0aN

−)

)
, (4.30)

where N− = iζ̄
(1)
− γ0ζ

(1)
− , as defined in eq. (4.8). The transformation δU(1)(N

−) corresponds

to a central charge transformation with parameter N−. This transformation was defined

in eq. (3.14). The transformation δG(τ0aN
−) corresponds to a local Galilean boost with

parameter τ0aN
−. This boost acts non-trivially only on π̄ψ− as follows

δG(τ0aN
−)π̄ψ− = − i

√
2

2
τ0aN

−γaπψ+ . (4.31)

Let us now turn to the case, in which there is a second Killing spinor (0, ζ
(2)
− ) = (0, γ0ζ

(1)
− ).

The anti-commutator of the supercharge Q(ζ
(2)
− ) with itself satisfies an anti-commutation

relation that is formally the same as in eq. (4.30). The mixed anti-commutator vanishes:{
Q(ζ

(1)
− ), Q(ζ

(2)
− )
}

= 0. Summarizing:

{
Q(ζ

(i)
− ), Q(ζ

(j)
− )
}

= −i δij
√

2

2

(
δU(1)(N

−)− 1

2
δG(τ0aN

−)

)
∀ i, j = 1, 2 . (4.32)

Since the Killing spinors (0, ζ
(i)
− ) do not carry U(1) charge and are inert under boosts,

it is furthermore true that
[
Q(ζ

(i)
− ),

{
Q(ζ

(j)
− ), Q(ζ

(k)
− )
}]

= 0 (with i, j, k = 1, 2). The

supercharges thus commute with the central charge symmetry and local Galilean boosts.

4.2 The case ζ+ 6= 0

As mentioned in section 3.3, the Killing spinor equations (3.19a)–(3.20b) are covariant with

respect to local Galilean boosts. From (3.22) one sees that, in case ζ+ is not identically

zero, one can completely fix this gauge freedom by setting ζ− = 0. Indeed, in case ζ− 6= 0

one can try to find a boost with parameters λa such that

ζ− −
1√
2
λaγa0ζ+ = 0 , (4.33)

i.e. such that the boosted ζ− is zero. Eq. (4.33) can be easily solved for the boost parameters

λa as follows

λa =
√

2
ζ̄+γaζ−
ζ̄+γ0ζ+

. (4.34)

Since ζ̄+γ0ζ+ ∝ ζ†+ζ+ 6= 0 for ζ+ 6= 0, this expression for the boost parameters is well-

defined and one sees that one can indeed completely fix the boost gauge symmetry that
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the Killing spinor equations exhibit by setting ζ− = 0. In the following, we will assume

that the boost gauge symmetry can be fixed in this way and we will look for solutions of

the Killing spinor equations of the form (ζ+, 0).12

Putting ζ− = 0 in the Killing spinor equations (3.19a)–(3.20b) leads to the following

equations: (
4v + εabτab

)
γ0ζ+ = 0 , (4.35a)(

3

2
τa0γa0 − γava + Re(u)γ0 − Im(u)

)
ζ+ = 0 , (4.35b)(

ωµ
aγa0 +

1

3
eµ
av0γa

)
ζ+ = 0 , (4.35c)

Dµζ+ =

(
− 1

4
τ0µ −

1

2
vµγ0 +

1

6
eµ
avbγaγbγ0 +

1

3
τµv0γ0

− 1

6
Re(u)eµ

aγa −
1

6
Im(u)eµ

aγa0

)
ζ+ , (4.35d)

where

Dµζ+ = ∂µζ+ +
1

4
ωµ

abγabζ+ . (4.36)

Note that, in contrast to the previous case, the spin-connection field ωµ
a now also enters

the equations. We can again assume that any non-trivial solution for ζ+ of these equations

is nowhere vanishing, via an argument analogous to the one given in section 4.1. The con-

ditions under which eqs. (4.35a)–(4.35d) admit non-trivial globally well-defined solutions

can then be phrased as follows:

Theorem 2. The equations (4.35a)–(4.35d) have one non-trivial globally well-defined so-

lution for ζ+ if and only if τ0µ is an exact one-form and there exists a globally well-defined

unit vector X+
a such that the following conditions hold:13

εabτab = −4v , (4.37a)

τ0a =
2

3

(
εabv

b + Re(u)X+
a + Im(u)Y +

a

)
, (4.37b)

ωµ
a = −1

3
εabeµbv0 , (4.37c)

vµ = −3τµY
+aD0X

+
a +

1

2
eµ
a
(
−3Y +bDaX

+
b − Re(u)Y +

a + Im(u)X+
a

)
, (4.37d)

where Y +
a = εabX

+b and DµX
+
a = ∂µX

+
a + ωµa

bX+
b . There are two independent globally

well-defined solutions for ζ+ if and only if τ0µ is exact and there exists a globally well-defined

unit vector X+
a such that the conditions (4.37a)–(4.37d) hold with u = 0.

12Strictly speaking, we are assuming here that ζ+ does not have any isolated zeros. In that case, one

could not apply the boost gauge fixing ζ− = 0 at the positions of the zeros of ζ+. We will not discuss this

possibility further here.
13Once again vb = eµbvµ and v0 = τµvµ, which appear on the right-hand side of conditions (4.37b)

and (4.37c) respectively, are fully determined by condition (4.37d). In view of (4.37c), this means in

particular that the connections for rotations and boosts are not independent for this class of solutions.
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Proof. The proof of this statement proceeds in an entirely similar fashion to the analo-

gous theorem of section 4.1. Let us thus first assume the existence of one non-trivial,

globally well-defined solution ζ
(1)
+ of eqs. (4.35a)–(4.35d) and show that this implies the

conditions (4.37a)–(4.37d), as well as the exactness of τ0µ. Via similar reasoning as in

section 4.1, it can be easily seen that eqs. (4.37a) and (4.37c) follow when eqs. (4.35a)

and (4.35c) are satisfied for a non-trivial ζ
(1)
+ . The existence of a nowhere vanishing and

globally well-defined ζ
(1)
+ allows us to define

N+ = −iζ̄
(1)
+ γ0ζ

(1)
+ , X+

a = − 1

N+
iζ̄

(1)
+ γ0aζ

(1)
+ , Y +

a = − 1

N+
iζ̄

(1)
+ γaζ

(1)
+ . (4.38)

As in section 4.1, N+ is nowhere vanishing because ζ
(1)
+ is and the vectors X+

a and Y +
a are

globally well-defined. By virtue of their definition and Fierz identities, they obey

X+
a = −εabY +

b , X+aX+
a = 1 = Y +aY +

a ,

X+aγaζ
(1)
+ = ζ

(1)
+ , Y +aγaζ

(1)
+ = γ0ζ

(1)
+ . (4.39)

With the help of X+
a and Y +

a , we can then rewrite (4.35b) as(
−3

2
εabτ0b − va + Re(u)Y +a − Im(u)X+a

)
γaζ

(1)
+ = 0 , (4.40)

from which (4.37b) follows. Using (4.37b) as well as (4.39) in the differential condi-

tion (4.35d) on ζ
(1)
+ , we then find

Dµζ
(1)
+ = −1

2
τ0µζ

(1)
+ + C+

µ γ0ζ
(1)
+ , (4.41)

where C+
µ = −1

6

(
τµv0 + 2eµ

ava + Re(u)eµ
aY +

a − Im(u)eµ
aX+

a

)
. (4.42)

From this equation, one derives that

∂µ
(
log(N+)

)
= −τ0µ , DµX

+
a = 2C+

µ Y
+
a . (4.43)

From the second equation, one finds

C+
µ =

1

2
Y +aDµX

+
a , (4.44)

which can be rewritten as (4.37d). Note that log(N+) is well-defined, since N+ is a well-

defined function that is strictly positive. The first equation of (4.43) then says that τ0µ is

an exact form.

In case there is a second solution ζ
(2)
+ of eqs. (4.35a)–(4.35d), we can follow a similar

reasoning as in theorem 1 to show that the conditions (4.37a)–(4.37d) have to be satisfied

with u = 0. Indeed, as in theorem 1, we can choose

ζ
(2)
+ = γ0ζ

(1)
+ . (4.45)
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Checking that this is a solution of eqs. (4.35a) and (4.35c) again leads to the condi-

tions (4.37a) and (4.37c). One also finds that requiring that ζ
(2)
+ is a solution of (4.35b)

leads to

τ0a =
2

3

(
εabv

b − Re(u)X+
a − Im(u)Y +

a

)
. (4.46)

Since this should hold simultaneously with (4.37b), one finds that u = 0 and that (4.37b)

holds with u = 0. One can then again show that the differential condition (4.35d), with

u = 0 and evaluated for ζ
(1)
+ (or equivalently for ζ

(2)
+ ), reduces to

Dµζ
(1)
+ = −1

2
τ0µζ

(1)
+ + c+

µ γ0ζ
(1)
+ , (4.47)

where c+
µ = −1

6
(τµv0 + 2eµ

ava) , (4.48)

from which exactness of τ0µ and eq. (4.37d) with u = 0 can be derived as above. In this

way, we see that the existence of a globally well-defined solution ζ
(1)
+ of eqs. (4.35a)–(4.35d)

implies exactness of τ0µ and the existence of a globally well-defined vector X+
a such that the

conditions (4.37a)–(4.37d) hold, where u = 0 in case there are two independent solutions.

Let us now assume that τ0µ is exact and that one can find a globally well-defined

vector X+
a such that eqs. (4.37a)–(4.37d) are valid. One can then easily see that the

Killing spinor equations (4.35a) and (4.35c) are identically satisfied for any ζ+, by virtue

of (4.37a) and (4.37c). Plugging (4.37b) in (4.35b), one finds that (4.35b) reduces to

(Re(u)γ0 − Im(u))
(
12 −X+aγa

)
ζ+ = 0 . (4.49)

When u = 0, this equation is again identically satisfied for any ζ+. When u 6= 0, we

can use the fact that then Re(u)γ0 − Im(u) is invertible to infer that ζ+ is an eigenvector

of X+aγa with eigenvalue +1. Such an eigenvector can always be found, since X+aγa is

diagonalizable with one eigenvalue +1 and the other eigenvalue -1. Finally, in this case,

we can use (4.37b), (4.37d) and the fact that ζ+ has to be an eigenvector of X+aγa with

eigenvalue 1, in (4.35d) to find that (4.35d) reduces to

Dµζ+ = −1

2
τ0µζ+ +

1

2
Y +aDµX

+
a γ0ζ+ . (4.50)

Similar manipulations give the same equation when u = 0. The spin connection terms in

the covariant derivatives of this equation again cancel out, leaving one with

∂µζ+ =−1

2
τ0µζ++

1

2
Y +a∂µX

+
a γ0ζ+ =−1

2
τ0µζ++

1

2

(
X+

2 ∂µX
+
1 −X

+
1 ∂µX

+
2

)
γ0ζ+ . (4.51)

Exactness of τ0µ can now be invoked to write

−1

2
τ0µ = ∂µΦ , (4.52)

where Φ is a well-defined function. The equation (4.51) can then be integrated to

ζ+ = eΦ exp

(
1

2
arctan

(
X+

1

X+
2

)
γ0

)
ζ+

0 , (4.53)
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where ζ+
0 is a constant spinor. When u = 0, this constant spinor is unconstrained, leading

to two independent solutions. When u 6= 0, ζ+
0 obeys

γ2ζ
+
0 = sign(X+

2 )ζ+
0 , (4.54)

to ensure that ζ+ is an eigenvector of X+aγa of eigenvalue 1. This shows that there is

only one solution when u 6= 0. In this way, we have shown that the conditions (4.37a)–

(4.37d) ensure that a solution of (4.35a)–(4.35d) can be found. This solution is globally

well-defined by virtue of the well-definedness of X+
a and Φ, thus proving the theorem.

As in theorem 1, one should show that the expression for vµ is independent of the

choice of Killing spinor when u = 0. This can be done analogously to the discussion at the

end of section 4.1.

Let us finally comment on the rigid superalgebra that is obeyed by the matter multi-

plet (3.18), when placed in a background, in which τ0µ is exact and the relations (4.37a)–

(4.37d) hold. Let us denote the supercharges associated to a solution (ζ
(i)
+ , 0) (i = 1, 2) of

the Killing spinor equations by Q(ζ
(i)
+ ). Considering first the case, in which there is only

one Killing spinor (ζ
(1)
+ , 0), we find the following anti-commutation relation

{
Q(ζ

(1)
+ ), Q(ζ

(1)
+ )
}

= −i

√
2

2
L
[
N+τµ

]
, (4.55)

where N+ = −iζ̄
(1)
+ γ0ζ

(1)
+ . The operator L [N+τµ] acts as an ordinary Lie derivative along

N+τµ on scalars and in the following way on fermions

L
[
N+τµ

]
ψ± = N+τµ

(
∇̄µψ± −

1

4
τµ

(
Y +
c D0X

+
c ε

ab
)
γabψ±

)
. (4.56)

Note that the second term on the right-hand-side takes the form of a local rotation. Let

us now assume that there exists a second Killing spinor (ζ
(2)
+ , 0), with ζ

(2)
+ = γ0ζ

(1)
+ . The

anti-commutator {Q(ζ
(2)
+ ), Q(ζ

(2)
+ )} is then formally the same as in eq. (4.55), whereas the

mixed anti-commutator {Q(ζ
(1)
+ ), Q(ζ

(2)
+ )} is zero. Summarizing:

{
Q(ζ

(i)
+ ), Q(ζ

(j)
+ )
}

= −i δij
√

2

2
L
[
N+τµ

]
∀i, j = 1, 2 . (4.57)

Note that the Lie derivatives of the geometric background fields τµ, eµ
a andmµ alongN+τµ,

are zero up to local spatial rotations, Galilean boosts and central charge transformations

(with parameters that depend on N+τµ), as can be checked by using equation (4.43).

In this sense, the quantity N+τµ can be interpreted as a time-like Killing vector of the

background Newton-Cartan geometry and the anti-commutation relation can be viewed

as saying that the supercharges close into a time-like background isometry. This isometry

furthermore commutes with the supercharges, i.e.,
[
Q(ζ

(i)
+ ),L [N+τµ]

]
= 0.
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4.3 Cases with Killing spinors of both types (0, ζ−) and (ζ+, 0)

Sections 4.1 and 4.2 dealt with the cases where there are one or two Killing spinors, that

are either both of the type (0, ζ−) (in section 4.1) or of the type (ζ+, 0) (in section 4.2). One

can also consider cases where there are 2 or more Killing spinors of both types present. This

can be done by combining the content of theorems 1 and 2 of the previous two subsections.

As an example, let us consider the constraints on the geometry and auxiliary fields in case

there are four Killing spinors, i.e. in case there are two Killing spinors of the type (0, ζ−)

and two of the type (ζ+, 0). Theorems 1 and 2 with u = 0 should then hold simultaneously.

One then easily sees that

εabτab = τ0a = v = va = 0 . (4.58)

There also exist well-defined unit vector fields X±a (along with Y ±a = εabX
±b) such that vµ

can be written in two different ways

vµ = τµY
−aD0X

−
a +

3

2
eµ
aY −bDaX

−
b and

vµ = −3τµY
+aD0X

+
a −

3

2
eµ
aY +bDaX

+
b . (4.59)

Extracting the va components from these equations and requiring that they are zero, then

implies that the spatial components eµaωµ
bc of the rotation connection can be written in

terms of X−a as

eµaωµ
bcεbc = −2eµa∂µ

(
arctan

(
X−1
X−2

))
, (4.60)

and that the vector fields X±a should obey the following constraint

eµa∂µ

(
arctan

(
X−1
X−2

))
= eµa∂µ

(
arctan

(
X+

1

X+
2

))
. (4.61)

By looking at the time-like component v0 of (4.59), we see that the time-like component

τµωµ
ab of the rotation connection and v0 are given in terms of X±a by

τµωµ
abεab = −1

2
τµ∂µ

(
arctan

(
X−1
X−2

))
− 3

2
τµ∂µ

(
arctan

(
X+

1

X+
2

))
,

v0 =
3

4
τµ∂µ

(
arctan

(
X−1
X−2

)
− arctan

(
X+

1

X+
2

))
. (4.62)

We thus see that ωµ
ab is completely determined by X±a . The same is true for the boost

connection ωµ
a, since

ωµ
a = −1

3
εabeµbv0 = −1

4
εabeµbτ

ν∂ν

(
arctan

(
X−1
X−2

)
− arctan

(
X+

1

X+
2

))
. (4.63)

Let us now discuss the algebra that is realized when we consider Killing spinors of

both types. We will again only consider the case in which there are four linearly inde-

pendent Killing spinors of the form (ζ
(i)
+ , 0) and (0, ζ

(j)
− ) (with i, j = 1, 2). The matter
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multiplet (3.18) is then only non-minimally coupled through v0. The supercharges denoted

by Q(ζ
(i)
+ ) and Q(ζ

(j)
− ) were discussed in sections 4.1 and 4.2 and as such, they satisfy

relations (4.32) (with τ0a = 0) and (4.57). Moreover, one also finds that{
Q(ζ

(1)
+ ), Q(ζ

(1)
− )
}

= − i

2
L [Naeµa] ,{

Q(ζ
(2)
+ ), Q(ζ

(2)
− )
}

= +
i

2
L [Naeµa] , (4.64){

Q(ζ
(1)
+ ), Q(ζ

(2)
− )
}

= − i

2
L
[
εabN

aeµb
]
,

where Na = iζ̄
(1)
+ γaζ

(1)
− . The operators L [Naeµa], resp. L

[
εabN

aeµb
]

act as ordinary Lie

derivative along Naeµa, resp. εabN
aeµb on scalars. Their action on fermions includes an

extra local boost term

L [Naeµa]ψ± = Naeµa∇̄µψ± − δG
(
∇̄0N

a
)
ψ± , (4.65)

and analogously for L
[
εabN

aeµb
]
. Moreover, one can show that Naeµa and εabN

aeµb

generate space-like isometries of the Newton-Cartan background geometry, in the sense

discussed after eq. (4.57). Using that the Killing spinors are constant with respect to the

derivative operation L of (4.65), one can furthermore show that the isometries commute

with the supercharges[
Q(ζ

(i)
± ),L[N+τµ]

]
= 0 ,

[
Q(ζ

(i)
± ),L[Naeµa]

]
= 0 ,

[
Q(ζ

(i)
± ),L[εabN

aeµb]
]

= 0 .

4.4 Examples

In this section, we will give two explicit classes of three-dimensional Newton-Cartan ge-

ometries that admit Killing spinors solving equations (3.19a)–(3.20b). The first class of

examples is characterized by an integrable Newton-Cartan foliation structure (i.e. with

τ[µ∂ντρ] = 0), whereas the second class has a non-integrable foliation structure (i.e. with

τ[µ∂ντρ] 6= 0).

Integrable foliation. In order to give our first class of examples, we split the coordinates

xµ as xµ = {x0 = t, xi} (i = 1, 2) and choose an Ansatz that expresses the Newton-Cartan

Vielbeine τµ, eµ
a and the central charge gauge field mµ in terms of three arbitrary functions

κ(t, xi), λ(t, xi) and φ(t, xi):

τµdxµ = eκ dt , eµ
adxµ = eλδai dx

i , and mµdxµ = φ τµdxµ . (4.66)

For the projective inverse Vielbeine τµ, eµa, we then have

∂0 = τµ∂µ = e−κ
∂

∂t
, ∂a = eµa∂µ = e−λδia

∂

∂xi
. (4.67)

This Ansatz is inspired by a class of four-dimensional Lorentzian backgrounds, discussed

in [5]. Note that this Ansatz is such that the time-like Vielbein τµ obeys the condition

τ[µ∂ντρ] = 0 , (4.68)
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but is not closed (∂[µτν] 6= 0). Specifically, the torsion τµν = 2∂[µτν] is found to be

τa0 = ∂aκ , τab = 0 . (4.69)

Geometries that obey this condition have been encountered in the context of the AdS/CFT

correspondence and are also commonly referred as ‘twistless torsional Newton-Cartan

geometries’ in the literature [10, 11]. Geometrically, the condition (4.68) says that

the Newton-Cartan manifold is foliated in a one-dimensional time-direction and two-

dimensional spatial slices. Our Ansatz then also specifies that the metric hµν = eµae
νa on

these spatial slices is conformally flat. The central charge gauge field mµ in our Ansatz only

has a non-zero time-like component τµmµ, given by φ. In the context of Newton-Cartan

gravity (which has zero torsion τµν = 0), φ would correspond to the Newton potential and

we will refer to φ as the Newton potential here as well. Note that this is a slight abuse of

terminology however, since the backgrounds we are looking for do not necessarily have to

solve any equations of motion of an underlying non-relativistic gravitational theory.

We will first restrict ourselves to the case in which we are looking for backgrounds

that have one or two Killing spinors of the form (0, ζ−) and discuss the (ζ+, 0) case later.

The background (auxiliary) fields then have to obey equations (4.5a)–(4.5c). Here, we will

work out the ensuing relations between the background fields {v, vµ, u} and the geometric

data {φ, κ, λ} explicitly. Using (B.2), it is straightforward to show that

ωµ ≡ ωµabεab = 2 eµ
aεab∂

bλ , ωµ
a = eµ

a∂0λ− τµ (∂aφ+ φ∂aκ) . (4.70)

The associated curvatures can be calculated from (B.4) and (B.5). For this particular

example, we will assume that ∂0κ = 0 = ∂0λ, so that the Newton-Cartan Vielbeine τµ and

eµ
a are time-independent. With this assumption, we find the following expressions for the

curvature of spatial rotations and boosts

Rµν(J) = −2 (∂c∂cλ+ ∂cλ∂cλ) εabeµ
aeν

b , (4.71)

Rµν(Ga) = 2
(
∂bΦa + ∂bκΦa − ∂aλΦb − Φ(aτ b)0

)
τ[µeν]b + 2Φb∂bλ τ[µeν]

a , (4.72)

where Φa = ∂aφ + φ∂aκ. Note that Rµν(J) does not depend on the Newton potential φ.

Moreover, the above expression for Rµν(J) captures the curvature of the spatial slices.

Demanding that there exist one or two solutions of the Killing spinor equations of the

form (ζ+ = 0, ζ−), entails requiring that there exists a well-defined unit vector field X−a , as

outlined in section 4.1. Here, we will choose this unit vector field to be constant and given

by X−1 = X−2 = 1/
√

2. Note that such a choice can be viewed as a gauge fixing for local

spatial rotations. The relations (4.5a)–(4.5c) then allow us to give explicit expressions for

the background fields:

v = 0 , v0 = 0 , va = −1

2
εab∂bκ+ εab∂bλ ,

Re(u) = −X−a ∂a (λ+ κ) , Im(u) = Y −a ∂
a (λ+ κ) , (4.73)

and for the Killing spinor

ζ− = e
π
8
γ0ζ−0 , (4.74)
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where the constant spinor ζ−0 is unconstrained if u = 0 (corresponding to the case in

which there are two Killing spinors) and obeys γ2ζ
−
0 = ζ−0 if u 6= 0 (corresponding to the

case in which there is only one Killing spinor). We note in passing that a straightforward

calculation confirms that substitution of the above expressions for the background fields in

the integrability condition (C.21) indeed results in (4.71), as it should.

As an illustrative example we consider a manifold whose spatial slices are isomorphic

to the Poincaré disc with radius `:

eλ =
2

1− xixi/`2
, where xixi < `2 , i = 1, 2 . (4.75)

When it comes to curvatures, we observe that Rµν(J) = −2/`2 εabeµ
aeν

b is completely

determined by the Ansatz (4.75). Note, however, that the Newton potential φ is uncon-

strained by supersymmetry — and thus also Rµν(Ga).

We will focus on the case of two supercharges, which imposes that u = 0 and thus

−∂aκ = ∂aλ. This leaves us with just one non-vanishing background field va = −3/2 εabτb0.

Inserting the explicit expression

va =
3

2

(
x2

`2
,−x

1

`2

)
(4.76)

into the action (3.16) and the transformation rules (3.18) yields a supersymmetric theory

that is coupled to the background (4.75). Note that this leads to a number of non-minimal

coupling terms that are suppressed by 1/`2, such that the action and the supersymmetry

rules reduce to the flat space expressions in the limit `→∞.

To summarize, we have shown that a twistless torsional Newton-Cartan geometry of the

form (4.66) (with τµ, eµ
a time-independent) with Poincaré disc spatial slices (determined

by (4.75)) and arbitrary Newton potential φ allows for two supercharges of the form (0, ζ−).

Let us now turn to the (ζ+, 0) case and assume there are two supercharges as in

the Poincaré disc example above. The relevant conditions now are those of theorem 2,

namely (4.37a)–(4.37d). Then the explicit expressions for the background fields, with unit

vector being once more X+
1 = X+

2 = 1/
√

2, are

v = 0 , v0 = 0 , u = 0 and va =
3

2
εabτb0 , (4.77)

while the Killing spinor takes the form

ζ+ = e
κ
2

+π
8
γ0ζ+

0 . (4.78)

Note the sign difference in va with respect to the previous example. In order to establish

that this background indeed satisfies all conditions of theorem 2, one should also exam-

ine the consistency of eqs. (4.37c) and (4.37d), noting that the spin connection is given

by (4.70). Consistency requires that Φa = 0, which can be solved by φ = e−κ. This in

turn means that the central charge gauge field is a constant one-form for this solution, i.e.

mµdx
µ = dt. Note that the curvature of boosts vanishes in this case, Rµν(Ga) = 0. Thus,

we have demonstrated that a twistless-torsional Newton-Cartan geometry with Poincaré
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disc spatial slices allows for two supercharges of the form (ζ+, 0) for the special potential

φ = e−κ.

Finally, let us comment for completeness on the case of vanishing torsion as a special

case of this class of examples. This is obtained for constant κ, which may be taken to be

zero without loss of generality. With φ = 0, the Newton-Cartan fields are

τµdxµ = dt , eµ
adxµ = eλδai dx

i , and mµdxµ = 0 , (4.79)

for which indeed τµν = 0, corresponding to R×M2 withM2 an arbitrary 2-manifold. For

time-independent λ, the boost connection vanishes, namely ωµ
a = 0, and the nonvanishing

components of ωµ are ωa = 2εab∂
bλ. Curvature thus resides in the spatial slices. The

background fields of the solution are then given as

v = 0 , v0 = 0 , va =
1

2
ωa ,

Re(u) = −1

2
Y −a ω

a , Im(u) = −1

2
X−a ω

a . (4.80)

Such solutions descend from four-dimensional supersymmetric backgrounds of the form

R1,1 ×M2 upon null reduction.

Non-integrable foliation. As a complementary class of examples, we consider torsional

Newton-Cartan geometries that have

τ[µ∂ντρ] 6= 0 (4.81)

which corresponds to a foliation of spacetime that is non-integrable. Note that such space-

times are typically excluded since non-relativistic causality is violated, see e.g. [44]. Here,

however, we do not consider geometry as a physical spacetime, but rather as a rigid back-

ground. This kind of geometrical structure is well-studied in the mathematical literature

and known as a contact structure, see e.g. [45].

We will now solve the Killing spinor equations explicitly by splitting the coordinates

xµ as xµ = {x0 = t, xi} (i = 1, 2) and choosing the Ansatz

τµ dx
µ = dt+ αi dx

i , eµ
adxµ = ei

adxi , and mµ dx
µ = −1

2
αi dx

i , (4.82)

which corresponds to the following expressions for the projective inverse Vielbeine τµ, eµa

τµ∂µ =
∂

∂t
, eµa∂µ = eia

(
∂

∂xi
− αi

∂

∂t

)
, (4.83)

where eia is the matrix inverse of ei
a. For simplicity, we assume that ∂tαi = 0 and ∂tei

a = 0,

which leads to τa0 = 0 but τab = 2eiae
j
b∂[iαj] 6= 0. In the context of contact geometry,

this identifies τµ∂µ as the Reeb-vector field [45]. Furthermore, the Newton-Cartan spin

connections may be once again computed using eqs. (B.2) and we find

ωµ
a =

1

4
eµbτ

ab , (4.84)

ωµ
ab = 2eν[a∂[µeν]

b] − eµceνaeρb∂[νeρ]c +
1

4
τµτ

ab . (4.85)

We observe that the two spin connections are related as ωµ
a = eµbτ

νων
ab.
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Backgrounds with non-integrable foliation τab 6= 0 cannot preserve more than two

supercharges. This can be seen by noting that having Killing spinors of both the form

(ζ+, 0) and (0, ζ−) implies that both eqs. (4.5a) and (4.37a) hold, implying that τab = 0.

Hence we conclude that backgrounds with τab 6= 0 can only preserve supercharges of the

form (0, ζ−) or (ζ+, 0) — and thus at most two supercharges. In our present analysis, we

assume two Killing spinors of the first type.

An explicit Newton-Cartan geometry for this example is

αi dx
i = − `

2
cos η1 dη2 , ei

1dxi =
`

2
dη1 , ei

2dxi =
`

2
sin η1 dη2 , (4.86)

defined on a three-manifold with coordinates

xµ = (t, η1, η2) t ∈ R, η1 ∈ [0, π), η2 ∈ [0, 2π) . (4.87)

In this case, the torsion is found to be τab = 2εab/`. Moreover, the components of the

Newton-Cartan spin connections can be written explicitly as

ωµ =
1

`
τµ −

4

`
cot η1 eµ

2 and ωµ
a =

1

2`
eµbε

ab . (4.88)

From the general discussion in section 4.1, we initially conclude that

u = 0 = va and v =
3

`
. (4.89)

Furthermore, we observe that a constant unit vector X−a is not a consistent choice in the

present case, since it would render condition (4.5c) inconsistent. Instead, we make the

time-dependent choice

X−1 = sin

(
2t

`

)
, X−2 = cos

(
2t

`

)
. (4.90)

Then, condition (4.5c) implies that

v0 =
5

2`
. (4.91)

It is then straightforward to check that all conditions of theorem 1 are satisfied. Further-

more, the only nonvanishing components of the corresponding curvatures are found to be

Rµν(J) =
14

`2
εabeµ

aeν
b , Rµν(Ga) = − 1

2`2
τ[µeν]

a . (4.92)

This geometry has an R × SO(3) isometry, where the non-compact part corresponds to

translations in time, as explained in [46]. In the same reference it is also shown that the

geometry (4.86) can be obtained from a null reduction of R × S3. The lighlike isometry

is a linear combination of time-translations and translations along the Hopf fiber. The

relativistic background R× S3 is known [3] to preserve four supercharges. Hence it is not

surprising that the null reduction (4.86) provides a supersymmetric background too. How-

ever, we observe that the three-dimensional geometry allows for just two supercharges of

the form (0, ζ−) with

ζ−(t) = etγ0/`ζ−0 , (4.93)

where ζ−0 is a constant, but otherwise unconstrained spinor.
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Note that two supercharges have been lost by reducing to three dimensions. This can

be traced back to the fact that not all Killing spinors in four dimensions can be made

independent of the chosen lightlike isometry.14

To summarize, we find a supersymmetric theory with two supercharges of the form

(0, ζ−) that is non-minimally coupled to the background (4.82) (with τµ and eµ
a time-

independent) with (4.86). All the terms that go beyond the flat space expression are

suppressed as `→∞.

5 Conclusions

Recent years have witnessed considerable progress in understanding non-perturbative as-

pects of QFT by constructing and studying susy QFTs on curved backgrounds. Observables

in such theories can often be calculated exactly via localization techniques [4]. This has

led to new insights in the non-perturbative structure of susy QFTs and allowed e.g. preci-

sion tests of AdS/CFT and holography. Most studies in the literature are concerned with

relativistic susy QFTs, i.e. susy QFTs on backgrounds in which local inertial frames are

connected via relativistic space-time symmetries. A natural question to ask is whether sim-

ilar techniques can be used to study the non-perturbative behaviour of non-relativistic susy

QFTs that live on space-times, whose local inertial frames are connected by non-relativistic

space-time symmetries, such as Newton-Cartan manifolds.

Motivated by this question, we have constructed examples of non-relativistic rigidly

supersymmetric field theories on curved three-dimensional Newton-Cartan manifolds. We

have in particular obtained a Lagrangian and supersymmetry transformation rules that

describe the dynamics of a three-dimensional non-relativistic ‘pseudo-chiral’ multiplet in

curved non-relativistic backgrounds. The backgrounds are specified by a set of fields that

determine the Newton-Cartan geometry, as well as by a set of auxiliary fields. The dy-

namical fields of the pseudo-chiral multiplet couple both minimally and non-minimally to

the background fields. The Lagrangian is only supersymmetric when non-trivial supersym-

metry parameters can be found as well-defined solutions of a set of non-relativistic Killing

spinor equations. The latter are a set of algebraic and first order partial differential equa-

tions for the supersymmetry parameters that depend on the background geometric and

auxiliary fields. We have derived necessary and sufficient conditions on the background

fields for well-defined solutions of the Killing spinor equations to exist. Non-relativistic

supersymmetric field theories can then be written down on Newton-Cartan manifolds that

obey these conditions and we have given explicit examples of such backgrounds.

Here, we have obtained non-relativistic susy QFTs on non-trivial backgrounds via a

null reduction of relativistic theories.15 We have in particular reduced the Lagrangian,

supersymmetry transformation rules and Killing spinor equations of a four-dimensional

14We thank Guido Festuccia for bringing that point to our attention and for remarking that an analogous

reduction that does not break supersymmetry might be possible within the framework of New Minimal

supergravity, see [3].
15More specifically, we employed a twisted null reduction to obtain theories whose field equations are

Schrödinger equations in curved backgrounds.
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theory for a chiral multiplet in a relativistic background. The latter theory can be elegantly

obtained by taking a rigid limit of matter coupled Lorentzian N = 1, d = 4 off-shell Old

Minimal supergravity [3]. Supersymmetry then requires that the allowed four-dimensional

backgrounds, on which susy QFTs can be formulated, have a null Killing vector. The latter

observation led us to consider the null reduction of four-dimensional relativistic susy QFTs

on curved manifolds as a means to obtain three-dimensional non-relativistic ones.

One limitation of this method is that it only leads to non-relativistic susy QFTs that

have a four-dimensional, relativistic origin and that it thus most likely does not lead to the

most general class of non-relativistic susy QFTs on curved three-dimensional manifolds.

Nevertheless, since the three-dimensional theories and backgrounds are qualitatively very

different from their four-dimensional parents, it is useful to study them on their own and to

give a purely three-dimensional analysis of which backgrounds lead to well-defined solutions

of the non-relativistic Killing spinor equations. In this way, we can extract some features of

non-relativistic susy QFTs on curved backgrounds that can be expected to hold regardless

of whether they are obtained via null reduction or via other means. For instance, we have

noticed in this paper that the set of non-relativistic Killing spinor equations consists not

only of first order partial differential equations, but also contains algebraic equations. The

latter do not decouple, but rather arise by transforming the differential Killing spinor equa-

tions under local Galilean boosts. In this way, the non-relativistic Killing spinor equations

form a reducible indecomposable representation of local Galilei symmetries. Since such re-

ducible indecomposable representations are common in non-relativistic theories, we expect

that the appearance of algebraic Killing spinor equations is not just a consequence of the

null reduction, but is a generic feature of non-relativistic susy QFTs on curved backgrounds.

There are several ways in which the work presented here can be extended. In this

paper, we focused on the null reduction of four-dimensional N = 1 susy QFTs on curved

backgrounds that involve a single chiral multiplet with canonical Kähler potential and zero

superpotential. This reduction can straightforwardly be extended to field theories with a

more general matter content and couplings or to theories with extended supersymmetry.

We also focused on the reduction of four-dimensional theories that were obtained as a rigid

limit of supersymmetric matter field theories coupled to Old Minimal off-shell supergravity.

One can also consider theories that are obtained from a rigid limit of four-dimensional

theories that are coupled to New Minimal off-shell supergravity. Such theories admit an

R-symmetry and it would be interesting to consider their null reduction. Another direction

one can consider concerns the construction of superconformal theories in curved Newton-

Cartan backgrounds. Recently, non-relativistic superconformal theories have been studied

in the context of the six-dimensional (2, 0) theory [47, 48]. Such theories could also be used

to give supersymmetric extensions of work on the anomaly structure of non-relativistic

scale-invariant field theories [49–55]. It would also be of interest to see whether it is

possible to find interesting non-relativistic susy QFTs in the class of theories that can

be obtained via null reduction, whose non-perturbative dynamics can be studied using

localization techniques.

An important open question concerns the possibility of obtaining non-relativistic susy

QFTs on curved backgrounds without using the null reduction, so without relying on
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higher-dimensional relativistic results. As mentioned above, the null reduction most likely

does not lead to the most general non-relativistic susy QFTs on curved backgrounds. More-

over, there are also non-relativistic geometries that are characterized by a different folia-

tion structure than ordinary Newton-Cartan geometry, such as e.g. string Newton-Cartan

geometries that admit a foliation with spatial leaves of codimension 2 [56]. These string

Newton-Cartan geometries are the ones non-relativistic strings [57] naturally live in [58, 59].

They can not be obtained from null reduction and one will thus have to resort to differ-

ent techniques to construct susy QFTs on them. It is therefore an interesting question to

see whether non-relativistic susy QFTs on curved backgrounds can be constructed more

directly, without having to rely on relativistic results. In this regard, it would be interest-

ing to see whether one can gain more insight into the structure of non-relativistic Killing

superalgebras and Killing spinor equations via cohomological methods [60–63]. In order

to also be able to construct Lagrangians and supersymmetry transformation rules, one

can consider mimicking the Festuccia-Seiberg method directly in three dimensions. This

would involve taking a rigid limit of non-relativistic supersymmetric field theories coupled

to off-shell supergravity. At present however, not much is known about non-relativistic,

three-dimensional off-shell supergravity nor about matter couplings in non-relativistic su-

pergravity. Partial results, based on a non-relativistic extension of superconformal tensor

calculus, led to a three-dimensional supergravity multiplet, on which the superalgebra closes

upon using only geometric constraints [29]. So far, a non-relativistic supergravity multiplet

that realizes the underlying superalgebra without having to impose any constraints, has

not been constructed. Matter couplings in non-relativistic supergravity have also not been

studied yet, neither in the on-shell Newton-Cartan supergravity of [27], nor in the partially

off-shell formulations with geometric constraints of [29]. In view of obtaining more general

non-relativistic susy QFTs in curved backgrounds, studying possible off-shell formulations

of non-relativistic supergravity and their matter couplings is clearly a very interesting and

pressing problem. We hope to report more on this in the future.
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A Conventions

In this paper, we use the mostly plus signature. The four-dimensional flat metric in

Minkowski coordinates {x0, x1, x2, x3} is thus given by diag(−1, 1, 1, 1). Four-dimensional

flat indices are denoted by A, B, · · · , whereas four-dimensional curved indices are denoted

by M , N , · · · . Flat null coordinates x± are introduced via

x− =
1√
2

(
x0 − x3

)
, x+ =

1√
2

(
x0 + x3

)
, (A.1)

so that the four-dimensional flat metric in null coordinates {x−, x+, x1, x2} is given by

ηAB =


− + b

− 0 −1 0

+ −1 0 0

a 0 0 δab

 . (A.2)

The fully anti-symmetric Levi-Civita symbol εABCD in flat indices is taken as

ε0123 = 1 , ε0123 = −1 . (A.3)

Introducing εab and εab (a = 1, 2) with

ε12 = ε12 = 1 , (A.4)

the Levi-Civita symbol in flat null indices is given by

ε−+ab = εab , ε−+ab = −εab . (A.5)

The symbol εMNOP with curved indices is defined as the tensor

εMNOP = EM
AEN

BEO
CEP

DεABCD . (A.6)

Since this is a tensor and not a tensor density, we can freely raise and lower its indices with

the metric. The spin connection of General Relativity is given by

ΩM
AB = 2EN [A∂[MEN ]

B] − ENAERBEMC∂[NER]
C . (A.7)

For four-dimensional spinors, we adopt the following conventions. Four-dimensional

Gamma-matrices are denoted by ΓA and obey the Clifford algebra

{ΓA,ΓB} = 2 ηAB 14 . (A.8)

The matrices Γ± in flat null indices are given in terms of Γ0, Γ3 in Minkowski indices by

Γ± =
1√
2

(
Γ0 ± Γ3

)
. (A.9)

The charge conjugation matrix obeys

CT = −C , ΓTA = −CΓAC
−1 . (A.10)
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The matrix Γ5 is defined as

Γ5 = iΓ0Γ1Γ2Γ3 , (A.11)

and obeys Γ†5 = Γ5 and ΓT5 = CΓ5C
−1. A Majorana spinor ε is a spinor for which the

Dirac conjugate iε†Γ0 is equal to the Majorana conjugate εTC. The subscript L/R on a

Majorana spinor ε denotes a chiral projection:

εL/R = PL/Rε , PL/R =
1

2
(14 ± Γ5) . (A.12)

The chiral projections of a Majorana spinor ε then obey

ε∗L = iCΓ0εR , ε∗R = iCΓ0εL . (A.13)

A bar on a Majorana spinor denotes the Dirac or Majorana conjugate without ambiguity.

For chiral projections of a Majorana spinor ε, we adopt the following notation:

ε̄L =
1

2
ε̄ (14 + Γ5) , ε̄R =

1

2
ε̄ (14 − Γ5) . (A.14)

B Null reduction results

For the convenience of the reader, we review a few results on null reduction [31]. We follow

the conventions of [44], which can also be consulted for more details.

The Ansatz (3.1) for the four-dimensional Vierbein EM
A in coordinates adapted to

a null Killing vector KM leads to the following expressions for the components of the

four-dimensional spin connection ΩM
AB:

Ωv
+− = 0 , Ωv

a− = 0 ,

Ωv
a+ = −1

2
eµaτρτµρ , Ωv

ab =
1

2
eµaeρbτµρ ,

Ωµ
+− = −1

2
τρτµρ , Ωµ

a− =
1

2
eρaτµρ ,

Ωµ
a+ = −ωµa +

1

2
mµe

ρaτστρσ , Ωµ
ab = ωµ

ab − 1

2
mµe

ρaeσbτρσ , (B.1)

where we have defined the Newton-Cartan spin connections ωµ
a, ωµ

ab and Newton-Cartan

torsion tensor τµν as follows:

ωµ
a = eνa∂[µmν] − eµbeνaτρ∂[νeρ]b − τν∂[µeν]

a − τµeνaτρ∂[νmρ] ,

ωµ
ab = 2eν[a∂[µeν]

b] − eµceνaeρb∂[νeρ]c − τµeνaeρb∂[νmρ] ,

τµν = 2∂[µτν] . (B.2)

Note that under Galilean boosts with parameter λa, the connections ωµ
a and ωµ

ab trans-

form as follows

δωµ
a = −∂µλa + λbωµ

ba +
1

2
λbeµbτ

a0 − 1

2
λaτµ0 ,

δωµ
ab = −λ[aτµ

b] − 1

2
λceµ

cτab . (B.3)
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We have the following expressions for the curvatures

Rµν(J) = 2∂[µων] − 2ω[µ
aeν]aτ

bcεbc − 2ω[µ
aτν]εabτ

b0 , (B.4)

Rµν(Ga) = 2∂[µων]
a + εabω[µων]

b + ω[µ
aτν]

0 + ω[µ
beν]

bτa0 , (B.5)

where we defined ωµ = ωµ
abεab.

We also sometimes use an affine, torsionful connection Γ̄ that is defined by the following

Vielbein postulates

∇̄µτν = ∂µτν − Γ̄ρµντρ = 0 , (B.6)

∇̄µeνa = ∂µeν
a + ωµ

abeν
b + ωµ

aτµ − Γ̄ρµνeρ
a = 0 . (B.7)

Using that the spin connections solve 2∂[µeν]
a + 2ω[µ

abeν]
b + 2ω[µ

aτν] = 0 and 2∂[µmν] −
2ω[µ

aeν]
a = 0, one finds

Γ̄ρµν = τρ∂µτν +
1

2
hρσ (∂µhσν + ∂νhσµ − ∂σhµν) + τµh

ρσ∂[νmσ] + τνh
ρσ∂[µmσ] , (B.8)

where hµν = eµae
ν
a. Observe that this affine Newton-Cartan connection has torsion

2Γ̄ρ[µν] = τρτµν . As a consequence

det(ea, τ)∇̄µXµ = ∂µ (det(ea, τ)Xµ) + det(ea, τ)τ0µX
µ . (B.9)

We decompose the four-dimensional Clifford algebra matrices ΓA as tensor products

of two (2× 2)-matrices as follows:

Γ± = γ0 ⊗ σ± , Γa = γa ⊗ 12 , a = 1, 2 , (B.10)

where σ± is given in terms of the Pauli-matrices σ1 and σ2 by

σ± =
1√
2

(σ1 ± iσ2) , (B.11)

and γ0, γa are the gamma-matrices of a three-dimensional Clifford algebra, normalized as

follows

γ2
0 = −12, {γa, γb} = 2 δab 12 and {γ0, γa} = 0. (B.12)

The following gamma-matrix relations hold:

γab = εabγ0 , γa0 = εabγb . (B.13)

The four-dimensional charge conjugation matrix C decomposes as

C = C3 ⊗ σ1 , (B.14)

where C3 is the three-dimensional charge conjugation matrix obeying

CT3 = −C3 , γT0 = −C3γ0C−1
3 , γTa = −C3γaC−1

3 . (B.15)
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C Integrability conditions

The Killing spinor equations described in section 3.3 lead to integrability conditions, which

must be satisfied for every consistent solution. In this appendix, we perform an analysis

of these conditions for each of the cases listed in sections 4.1 and 4.2. For convenience,

we first organize the two differential Killing spinor equations in a way that highlights the

three different gamma matrix structures that appear. Specifically,

∇̄µε+ :=
(
P+
µ +Q+

µ γ0 +Ra+
µ γa

)
ε+ +

(
P̃+
µ + Q̃+

µ γ0 + R̃a+
µ γa

)
ε− , (C.1a)

∇̄µε− :=
(
P−µ +Q−µ γ0 +Ra−µ γa

)
ε− + R̃a−µ γaε+ , (C.1b)

where the covariant derivatives are defined as in eqs. (3.21) and the tensors appearing

in (C.1) are

P+
µ = −1

4
τµ

0 − 1

6
eµ
avbεab , P̃+

µ = −
√

2

6
Im(u)τµ ,

Q+
µ = −1

3
eµ
ava −

1

6
τµv0 , Q̃+

µ = −
√

2

6
Re(u)τµ ,

Ra+
µ = −1

6
Re(u)eµ

a +
1

6
Im(u)eµ

bεab , R̃a+
µ = −

√
2

6
veµ

a −
√

2

6
τµva +

√
2

4
τµ
bεab ,

P−µ =
1

4
τµ

0 +
1

6
eµ
avbεab , Q−µ =

1

3
eµ
ava +

1

2
τµv0 ,

Ra−µ = −1

6
Re(u)eµ

a − 1

6
Im(u)eµ

bεab , R̃a−µ =

√
2

6
eµ
av0 . (C.2)

Next, since the covariant derivatives (3.21) transform under boosts as

δ(∇̄µε+) = −1

4
λceµ

cτabγabε+ −
1

4
λaτµτ0

bγabε+ , (C.3)

δ(∇̄µε−) = −
√

2

2
λaγa0∇̄µε+ −

1

4
λceµ

cτabγabε− −
1

4
λaτµτ0

bγabε−−

−
√

2

4
λbeµbτ

a0γa0ε+ +

√
2

4
λaeµ

bτb0γa0ε+ , (C.4)

we define

∇̄µ∇̄νε+ =

(
∂µ +

1

4
ωµ

abγab

)
∇̄νε+ −

1

4
ωµ

ceνcτ
abγabε+ −

1

4
ωµ

aτντ0
bγabε+ , (C.5)

∇̄µ∇̄νε− =

(
∂µ +

1

4
ωµ

abγab

)
∇̄νε− −

√
2

2
ωµ

aγa0∇̄νε+ −
1

4
ωµceν

cτabγabε−−

− 1

4
ωµ

aτντ0
bγabε− −

√
2

4
ωµ

beνbτ
a0γa0ε+ +

√
2

4
ωµ

aeν
bτb0γa0ε+ . (C.6)

A straightforward computation gives the following result for the commutation relations of

covariant derivatives,

[∇̄µ, ∇̄ν ]ε+ =
1

4
Rµν(J)γ0ε+ , (C.7)

[∇̄µ, ∇̄ν ]ε− =
1

4
Rµν(J)γ0ε− +

√
2

2
εabRµν(Gb)γaε+ , (C.8)
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with the curvatures given as in (B.4) and (B.5). In the spirit of section 4, we express

the solutions of the Killing spinor equations in terms of commuting spinors (ζ+, ζ−) and

perform an analysis for the following cases.

C.1 The case ζ+ = 0

In the present case, the covariant derivatives as defined above satisfy the commutation

relation

[∇̄µ, ∇̄ν ]ζ− =
1

4
Rµν(J)γ0ζ− . (C.9)

Let us first assume that the spinor ζ− is not further constrained and there are two solutions

to the Killing spinor equations. This is the case when u = 0, as discussed in the proof

of theorem 1. Then a direct calculation on the basis of (C.1) leads to the integrability

condition (
Uµν + Vµνγ0 +W a

µνγa
)
ζ− = 0 , (C.10)

where

Uµν = 2∂[µP
−
ν] , (C.11a)

Vµν =−1

4
Rµν(J)+2∂[µQ

−
ν]−2εabR

a−
[µ R

b−
ν] −

1

2
ω[µ

ceν]cτ
abεab−

1

2
ω[µ

aτν]τ0
bεab , (C.11b)

W a
µν = 2∂[µR

a−
ν] +εabω[µR

b−
ν] −4εabQ

−
[µR

b−
ν] . (C.11c)

Thus we are directly led to impose three conditions, namely

Uµν = 0 , Vµν = 0 , W a
µν = 0 . (C.12)

Upon substitution of P−µ as given in (C.2), a straightforward calculation shows that Uµν = 0

is an identity due to the relation

τ0a = −2

3
εabv

b , (C.13)

which follows from the algebraic Killing spinor equation (4.2b) in the present case that

u = 0. In addition, Ra−µ vanishes and thus the condition W a
µν = 0 is identically satisfied

as well. The remaining integrability condition, Vµν = 0, can be algebraically manipulated

and it yields the final result

Rµν(J) =
8

3
D[µvν] −

4

3
τ[µDν]v0 +

2

3
τµνv0 , (C.14)

where the boost covariant derivatives on vµ and v0 are defined as

Dµvν = ∂µvν − ωµaeνav , (C.15)

Dµv0 = ∂µv0 − ωµava . (C.16)

The above situation changes when the spinor ζ− is constrained further. Indeed, when

it obeys

X−aγaζ− = ζ− , (C.17)
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it is simple to show that

γaζ− = Y −a γ0ζ− +X−a ζ− , (C.18)

and therefore there is a reduction of the possible gamma matrix structures in the Killing

spinor equations and in the corresponding integrability conditions. One should then be

cautious and rederive the integrability conditions, since now the derivative can act on X−a
too and thus (C.10) is no longer the correct condition. Since now there are only two possible

gamma matrix structures, there are two conditions which read as

2∂[µ

(
P−ν] +Ra−ν] X

−
a

)
= 0 , (C.19a)

2∂[µ

(
Q−ν] +Ra−ν] Y

−
a

)
− 1

2
ω[µ

ceν]cτ
abεab −

1

2
ω[µ

aτν]τ0
bεab =

1

4
Rµν(J) . (C.19b)

Substituting the tensors given in (C.2), one finds that the first condition (C.19a) reads

∂[µ

(
eν]

a

(
3

2
τ0a + εabv

b − Re(u)X−a + Im(u)Y −a

))
= 0 , (C.20)

and therefore it is satisfied identically due to theorem 1. The remaining integrability

condition stemming from (C.19b) is then found to be

Rµν(J) =
8

3
D[µvν] −

4

3
τ[µDν]v0 +

2

3
τµνv0−

− 4

3
e[ν

aY −a ∂µ](Re(u))− 4

3
e[ν

aX−a ∂µ](Im(u))−

− 4

3
e[ν

aRe(u)Dµ]Y
−
a −

4

3
e[ν

aIm(u)Dµ]X
−
a , (C.21)

where the covariant derivatives on X−a and Y −a are as defined in theorem 1.

C.2 The case ζ+ 6= 0

Following the same logic as in the previous case, first we examine the integrability condition

in case there are two solutions, which means that u = 0, as shown in the main text. Then

Ra+
µ = 0 and a straightforward computation leads to the two conditions

2∂[µP
+
ν] = 0 , (C.22a)

− 1

4
Rµν(J) + 2∂[µQ

+
ν] −

1

2
ω[µ

ceν]cτ
abεab −

1

2
ω[µ

aτν]τ0
bεab = 0 . (C.22b)

The first condition, using the explicit expression for P+
µ , becomes

∂[µ

(
eν]

a

(
τa

0 +
2

3
εabv

b

))
= 0 . (C.23)

However, since in the present case (see theorem 2) it holds that τa
0 = 2

3εabv
b for u = 0, we

directly obtain that the 1-form τµ0 must be closed,

∂[µτν]0 = 0 . (C.24)

– 39 –



J
H
E
P
0
7
(
2
0
2
0
)
1
7
5

This is in agreement with theorem 2, where this 1-form is even exact, and therefore this con-

dition does not pose further restrictions. On the other hand, the second condition (C.22b),

upon using the algebraic Killing spinor equations as in theorem 2, becomes

Rµν(J) = −8

3
D[µvν] −

4

3
τ[µDν]v0 −

2

9
τµνv0 +

4

9
e[µ

aτν]v0τa0 , (C.25)

with the covariant derivatives defined as before but specialized to the value of the boost

connection ωµ
a given in (4.37c).

As in the previous case, when the spinor ζ+ is constrained further and u 6= 0, the

integrability condition changes. The spinor obeys

X+aγaζ+ = ζ+ , (C.26)

and therefore

γaζ+ = Y +
a γ0ζ+ +X+

a ζ+ , (C.27)

which reduces the possible gamma matrix structures in the Killing spinor equations and in

the corresponding integrability conditions. The resulting two conditions are analogous to

the corresponding ones for ζ+ = 0 and they read as

2∂[µ

(
P+
ν] +Ra+

ν] X
+
a

)
= 0 , (C.28a)

2∂[µ

(
Q+
ν] +Ra+

ν] Y
+
a

)
− 1

2
ω[µ

ceν]cτ
abεab −

1

2
ω[µ

aτν]τ0
bεab =

1

4
Rµν(J) . (C.28b)

Upon substitution of P+
µ and Ra+

µ from (C.2), the first condition (C.19a) becomes

∂[µ

(
eν]

a

(
3

2
τ0a + εabv

b + Re(u)X+
a + Im(u)Y +

a

))
= 0 , (C.29)

and combining it with the algebraic Killing spinor equation that leads to (4.37b) of the-

orem 2, it translates once more to the closedness of the one-form τµ0, namely to (C.24),

which holds because the one-form is exact. In turn, the second condition (C.28b) becomes

Rµν(J) = −8

3
D[µvν] −

4

3
τ[µDν]v0 −

2

9
τµνv0 +

4

9
e[µ

aτν]v0(τa0 − 2Re(u)X+
a + 2Im(u)Y +

a )−

− 4

3
e[ν

aY +
a ∂µ](Re(u)) +

4

3
e[ν

aX+
a ∂µ](Im(u))−

− 4

3
e[ν

aRe(u)Dµ]Y
+
a +

4

3
e[ν

aIm(u)Dµ]X
+
a , (C.30)

with the covariant derivatives on X+
a and Y +

a as in theorem 2.
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