Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The Higgs and leptophobic force at the LHC

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 14 July 2020
  • volume 2020, Article number: 87 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The Higgs and leptophobic force at the LHC
Download PDF
  • Pavel Fileviez Pérez1,
  • Elliot Golias1,
  • Clara Murgui2 &
  • …
  • Alexis D. Plascencia1 
  • 223 Accesses

  • 5 Citations

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

The Higgs boson could provide the key to discover new physics at the Large Hadron Collider. We investigate novel decays of the Standard Model (SM) Higgs boson into leptophobic gauge bosons which can be light in agreement with all experimental constraints. We study the associated production of the SM Higgs and the leptophobic gauge boson that could be crucial to test the existence of a leptophobic force. Our results demonstrate that it is possible to have a simple gauge extension of the SM at the low scale, without assuming very small couplings and in agreement with all the experimental bounds that can be probed at the LHC.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. Particle Data Group, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  4. M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC, in Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC, CERN Yellow Reports: Monographs 7, A. Dainese, M. Mangano, A.B. Meyer, A. Nisati, G. Salam and M.A. Vesterinen eds., CERN (2019), pp. 221–584 [arXiv:1902.00134] [INSPIRE].

  5. A. Pais, Remark on baryon conservation, Phys. Rev. D 8 (1973) 1844 [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Foot, G.C. Joshi and H. Lew, Gauged Baryon and Lepton Numbers, Phys. Rev. D 40 (1989) 2487 [INSPIRE].

    Article  ADS  Google Scholar 

  7. C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].

  8. P. Fileviez Pérez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].

  9. P. Fileviez Pérez and M.B. Wise, Breaking Local Baryon and Lepton Number at the TeV Scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].

    Article  Google Scholar 

  10. M. Duerr, P. Fileviez Pérez and M.B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].

  11. P. Fileviez Pérez, S. Ohmer and H.H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].

    Article  ADS  Google Scholar 

  12. P. Fileviez Pérez, New Paradigm for Baryon and Lepton Number Violation, Phys. Rept. 597 (2015) 1 [arXiv:1501.01886] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Duerr and P. Fileviez Pérez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Ohmer and H.H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Duerr, P. Fileviez Pérez and J. Smirnov, Baryonic Higgs at the LHC, JHEP 09 (2017) 093 [arXiv:1704.03811] [INSPIRE].

    Article  ADS  Google Scholar 

  16. P. Fileviez Pérez, E. Golias, R.-H. Li and C. Murgui, Leptophobic Dark Matter and the Baryon Number Violation Scale, Phys. Rev. D 99 (2019) 035009 [arXiv:1810.06646] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Fileviez Pérez, E. Golias, R.-H. Li, C. Murgui and A.D. Plascencia, Anomaly-free dark matter models, Phys. Rev. D 100 (2019) 015017 [arXiv:1904.01017] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Carena, M. Quirós and Y. Zhang, Dark CP-violation and gauged lepton or baryon number for electroweak baryogenesis, Phys. Rev. D 101 (2020) 055014 [arXiv:1908.04818] [INSPIRE].

    Article  ADS  Google Scholar 

  19. CMS collaboration, Search for Low-Mass Quark-Antiquark Resonances Produced in Association with a Photon at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 123 (2019) 231803 [arXiv:1905.10331] [INSPIRE].

  20. CMS collaboration, Search for narrow resonances in dijet final states at \( \sqrt{s} \) = 8 TeV with the novel CMS technique of data scouting, Phys. Rev. Lett. 117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].

  21. CMS collaboration, Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett. 120 (2018) 201801 [arXiv:1802.06149] [INSPIRE].

  22. CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 112007 [arXiv:1909.04114] [INSPIRE].

  23. CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions at \( \sqrt{s} \) = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130 [arXiv:1806.00843] [INSPIRE].

  24. CMS collaboration, Search for dijet resonances using events with three jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 805 (2020) 135448 [arXiv:1911.03761] [INSPIRE].

  25. ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 121 (2018) 081801 [arXiv:1804.03496] [INSPIRE].

  26. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  27. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Ilnicka, T. Robens and T. Stefaniak, Constraining Extended Scalar Sectors at the LHC and beyond, Mod. Phys. Lett. A 33 (2018) 1830007 [arXiv:1803.03594] [INSPIRE].

    Article  ADS  Google Scholar 

  30. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  31. LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  32. G. Apollinari et al., High-Luminosity Large Hadron Collider (HL-LHC), in CERN Yellow Reports: Monographs 4, CERN (2017) [CERN-2017-007-M] [INSPIRE].

  33. ATLAS collaboration, Observation of H → \( b\overline{b} \) decays and V H production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

  34. CMS collaboration, Evidence for the Higgs boson decay to a bottom quark-antiquark pair, Phys. Lett. B 780 (2018) 501 [arXiv:1709.07497] [INSPIRE].

  35. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, AIP Conf. Proc. 1078 (2009) 189 [arXiv:0809.2530] [INSPIRE].

    ADS  Google Scholar 

  36. K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z – Z′ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].

  37. A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  38. CMS collaboration, Search for a narrow resonance decaying to a pair of muons in proton-proton collisions at 13 TeV, CMS-PAS-EXO-19-018 (2019) [INSPIRE].

  39. LHCb collaboration, Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Physics Department and Center for Education and Research in Cosmology and Astrophysics (CERCA), Case Western Reserve University, Cleveland, OH, 44106, USA

    Pavel Fileviez Pérez, Elliot Golias & Alexis D. Plascencia

  2. Departamento de Física Teórica, IFIC, Universitat de Valencia-CSIC, E-46071, Valencia, Spain

    Clara Murgui

Authors
  1. Pavel Fileviez Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Elliot Golias
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Clara Murgui
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexis D. Plascencia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.09426

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Golias, E., Murgui, C. et al. The Higgs and leptophobic force at the LHC. J. High Energ. Phys. 2020, 87 (2020). https://doi.org/10.1007/JHEP07(2020)087

Download citation

  • Received: 09 April 2020

  • Revised: 26 May 2020

  • Accepted: 09 June 2020

  • Published: 14 July 2020

  • DOI: https://doi.org/10.1007/JHEP07(2020)087

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Higgs Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature