Skip to main content

On boundary correlators in Liouville theory on AdS2

A preprint version of the article is available at arXiv.

Abstract

We consider the Liouville theory in fixed Euclidean AdS2 background. Expanded near the minimum of the potential the elementary field has mass squared 2 and (assuming the standard Dirichlet b.c.) corresponds to a dimension 2 operator at the boundary. We provide strong evidence for the conjecture that the boundary correlators of the Liouville field are the same as the correlators of the holomorphic stress tensor (or the Virasoro generator with the same central charge) on a half-plane or a disc restricted to the boundary. This relation was first observed at the leading semiclassical order (tree-level Witten diagrams in AdS2) in [19] and here we demonstrate its validity also at the one-loop level. We also discuss arguments that may lead to its general proof.

References

  1. E. D’Hoker and R. Jackiw, Space translation breaking and compactification in the Liouville theory, Phys. Rev. Lett.50 (1983) 1719 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. E. D’Hoker, D.Z. Freedman and R. Jackiw, SO(2, 1) invariant quantization of the Liouville theory, Phys. Rev.D 28 (1983) 2583 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. T. Inami and H. Ooguri, Dynamical breakdown of supersymmetry in two-dimensional anti-de Sitter space, Nucl. Phys.B 273 (1986) 487 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys.B 340 (1990) 366 [INSPIRE].

    ADS  Article  Google Scholar 

  5. A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].

  6. D. Carmi, L. Di Pietro and S. Komatsu, A study of quantum field theories in AdS at finite coupling, JHEP01 (2019) 200 [arXiv:1810.04185] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5: semiclassical partition function, JHEP04 (2000) 021 [hep-th/0001204] [INSPIRE].

    ADS  Article  Google Scholar 

  8. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys.B 581 (2000) 116 [hep-th/0002106] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. J. Polchinski and J. Sully, Wilson loop renormalization group flows, JHEP10 (2011) 059 [arXiv:1104.5077] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP07 (2006) 024 [hep-th/0604124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2/CFT 1, Nucl. Phys.B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

    ADS  Article  Google Scholar 

  13. M. Beccaria and A.A. Tseytlin, On non-supersymmetric generalizations of the Wilson-Maldacena loops in N = 4 SYM, Nucl. Phys.B 934 (2018) 466 [arXiv:1804.02179] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. M. Beccaria, S. Giombi and A.A. Tseytlin, Correlators on non-supersymmetric Wilson line in N = 4 SYM and AdS 2/CFT 1, JHEP05 (2019) 122 [arXiv:1903.04365] [INSPIRE].

    ADS  Article  Google Scholar 

  15. A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett.B 103 (1981) 207 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. J. Teschner, Liouville theory revisited, Class. Quant. Grav.18 (2001) R153 [hep-th/0104158] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. Y. Nakayama, Liouville field theory: a decade after the revolution, Int. J. Mod. Phys.A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. P. Menotti and E. Tonni, Standard and geometric approaches to quantum Liouville theory on the pseudosphere, Nucl. Phys.B 707 (2005) 321 [hep-th/0406014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. H. Ouyang, Holographic four-point functions in Toda field theories in AdS 2, JHEP04 (2019) 159 [arXiv:1902.10536] [INSPIRE].

    ADS  Article  Google Scholar 

  20. A. Strominger, AdS 2quantum gravity and string theory, JHEP01 (1999) 007 [hep-th/9809027] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. A. Almheiri and J. Polchinski, Models of AdS 2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    ADS  Article  Google Scholar 

  22. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  23. J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    ADS  Article  Google Scholar 

  24. J.-L. Gervais and A. Neveu, New quantum treatment of Liouville field theory, Nucl. Phys.B 224 (1983) 329 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. P. Mansfield, Light cone quantization of the Liouville and Toda field theories, Nucl. Phys.B 222 (1983) 419 [INSPIRE].

    ADS  Article  Google Scholar 

  26. E. Braaten, T. Curtright, G. Ghandour and C.B. Thorn, A class of conformally invariant quantum field theories, Phys. Lett.B 125 (1983) 301 [INSPIRE].

    ADS  Article  Google Scholar 

  27. C. Ahn, C. Rim and M. Stanishkov, Exact one point function of N = 1 super-Liouville theory with boundary, Nucl. Phys.B 636 (2002) 497 [hep-th/0202043] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. L.A. Takhtajan, Topics in quantum geometry of Riemann surfaces: two-dimensional quantum gravity, in Como quantum groups, Villa Monastero, Varenna, Italy (1994), pg. 541 [hep-th/9409088] [INSPIRE].

  29. P. Menotti and E. Tonni, The tetrahedron graph in Liouville theory on the pseudosphere, Phys. Lett.B 586 (2004) 425 [hep-th/0311234] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d/AdS d+1correspondence, Nucl. Phys.B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

    ADS  Article  Google Scholar 

  31. T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [INSPIRE].

  32. P. Menotti and E. Tonni, Liouville field theory with heavy charges. I. The pseudosphere, JHEP06 (2006) 020 [hep-th/0602206] [INSPIRE].

  33. E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys.B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. H. Osborn, Conformal blocks for arbitrary spins in two dimensions, Phys. Lett.B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matteo Beccaria.

Additional information

ArXiv ePrint: 1904.12753

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beccaria, M., Tseytlin, A.A. On boundary correlators in Liouville theory on AdS2. J. High Energ. Phys. 2019, 8 (2019). https://doi.org/10.1007/JHEP07(2019)008

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2019)008

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory