Signals of the electroweak phase transition at colliders and gravitational wave observatories

  • Mikael ChalaEmail author
  • Claudius Krause
  • Germano Nardini
Open Access
Regular Article - Theoretical Physics


If the electroweak phase transition (EWPT) is of strongly first order due to higher dimensional operators, the scale of new physics generating them is at the TeV scale or below. In this case the effective-field theory (EFT) neglecting operators of dimension higher than six may overlook terms that are relevant for the EWPT analysis. In this article we study the EWPT in the EFT to dimension eight. We estimate the reach of the future gravitational wave observatory LISA for probing the region in which the EWPT is strongly first order and compare it with the capabilities of the Higgs measurements via double-Higgs production at current and future colliders. We also match different UV models to the previously mentioned dimension-eight EFT and demonstrate that, from the top-down point of view, the double-Higgs production is not the best signal to explore these scenarios.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  2. [2]
    E. Witten, Cosmic separation of phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].ADSGoogle Scholar
  3. [3]
    C.J. Hogan, Gravitational radiation from cosmological phase transitions, Mon. Not. Roy. Astron. Soc. 218 (1986) 629 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].
  5. [5]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m H larger or equal to m W ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].
  6. [6]
    K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine and M.E. Shaposhnikov, The universality class of the electroweak theory, Nucl. Phys. B 532 (1998) 283 [hep-lat/9805013] [INSPIRE].
  7. [7]
    M. Laine and K. Rummukainen, What’s new with the electroweak phase transition?, Nucl. Phys. Proc. Suppl. 73 (1999) 180 [hep-lat/9809045] [INSPIRE].
  8. [8]
    F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].
  9. [9]
    P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054 [hep-ph/0607158] [INSPIRE].
  11. [11]
    G. Nardini, M. Quirós and A. Wulzer, A confining strong first-order electroweak phase transition, JHEP 09 (2007) 077 [arXiv:0706.3388] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Konstandin, G. Nardini and M. Quirós, Gravitational backreaction effects on the holographic phase transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].ADSGoogle Scholar
  13. [13]
    E. Megías, G. Nardini and M. Quirós, Cosmological phase transitions in warped space: gravitational waves and collider signatures, arXiv:1806.04877 [INSPIRE].
  14. [14]
    J. García-Bellido, D. Yu. Grigoriev, A. Kusenko and M.E. Shaposhnikov, Nonequilibrium electroweak baryogenesis from preheating after inflation, Phys. Rev. D 60 (1999) 123504 [hep-ph/9902449] [INSPIRE].
  15. [15]
    L.M. Krauss and M. Trodden, Baryogenesis below the electroweak scale, Phys. Rev. Lett. 83 (1999) 1502 [hep-ph/9902420] [INSPIRE].
  16. [16]
    J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228] [INSPIRE].
  17. [17]
    J. Smit and A. Tranberg, Chern-Simons number asymmetry from CP-violation at electroweak tachyonic preheating, JHEP 12 (2002) 020 [hep-ph/0211243] [INSPIRE].
  18. [18]
    T. Konstandin and G. Servant, Natural cold baryogenesis from strongly interacting electroweak symmetry breaking, JCAP 07 (2011) 024 [arXiv:1104.4793] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. ArunaSalam, A. Kobakhidze, C. Lagger, S. Liang and A. Zhou, Low temperature electroweak phase transition in the Standard Model with hidden scale invariance, Phys. Lett. B 776 (2018) 48 [arXiv:1709.10322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    B. von Harling and G. Servant, QCD-induced electroweak phase transition, JHEP 01 (2018) 159 [arXiv:1711.11554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Quirós, Finite temperature field theory and phase transitions, in Proceedings, Summer School in high-energy physics and cosmology, Trieste, Italy, 29 June-17 July 1998, pg. 187 [hep-ph/9901312] [INSPIRE].
  22. [22]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    X.-M. Zhang, Operators analysis for Higgs potential and cosmological bound on Higgs mass, Phys. Rev. D 47 (1993) 3065 [hep-ph/9301277] [INSPIRE].
  24. [24]
    C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the Standard Model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
  25. [25]
    D. Bödeker, L. Fromme, S.J. Huber and M. Seniuch, The baryon asymmetry in the Standard Model with a low cut-off, JHEP 02 (2005) 026 [hep-ph/0412366] [INSPIRE].
  26. [26]
    C. Delaunay, C. Grojean and J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Grinstein and M. Trott, Electroweak baryogenesis with a pseudo-Goldstone Higgs, Phys. Rev. D 78 (2008) 075022 [arXiv:0806.1971] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P.H. Damgaard, A. Haarr, D. O’Connell and A. Tranberg, Effective field theory and electroweak baryogenesis in the singlet-extended Standard Model, JHEP 02 (2016) 107 [arXiv:1512.01963] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak baryogenesis and the Standard Model effective field theory, JHEP 01 (2018) 089 [arXiv:1710.04061] [INSPIRE].CrossRefzbMATHGoogle Scholar
  30. [30]
    M. Laine and A. Vuorinen, Basics of thermal field theory, Lect. Notes Phys. 925 (2016) 1 [arXiv:1701.01554] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].ADSGoogle Scholar
  32. [32]
    E. Greenwood, E. Halstead, R. Poltis and D. Stojkovic, Dark energy, the electroweak vacua and collider phenomenology, Phys. Rev. D 79 (2009) 103003 [arXiv:0810.5343] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Chala, G. Nardini and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D 94 (2016) 055006 [arXiv:1605.08663] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S.J. Huber and M. Sopena, An efficient approach to electroweak bubble velocities, arXiv:1302.1044 [INSPIRE].
  36. [36]
    T. Konstandin, G. Nardini and I. Rues, From Boltzmann equations to steady wall velocities, JCAP 09 (2014) 028 [arXiv:1407.3132] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Leitao and A. Megevand, Hydrodynamics of phase transition fronts and the speed of sound in the plasma, Nucl. Phys. B 891 (2015) 159 [arXiv:1410.3875] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Bödeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP 05 (2009) 009 [arXiv:0903.4099] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    D. Bödeker and G.D. Moore, Electroweak bubble wall speed limit, JCAP 05 (2017) 025 [arXiv:1703.08215] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  40. [40]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
  41. [41]
    LISA collaboration, H. Audley et al., Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
  42. [42]
    S. Di Vita, C. Grojean, G. Panico, M. Riembau and T. Vantalon, A global view on the Higgs self-coupling, JHEP 09 (2017) 069 [arXiv:1704.01953] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178 [arXiv:1711.03978] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.H. Kim, Y. Sakaki and M. Son, Combined analysis of double Higgs production via gluon fusion at the HL-LHC in the effective field theory approach, arXiv:1801.06093 [INSPIRE].
  45. [45]
    TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  46. [46]
    A. Papaefstathiou and K. Sakurai, Triple Higgs boson production at a 100 TeV proton-proton collider, JHEP 02 (2016) 006 [arXiv:1508.06524] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    Y. Jiang and M. Trott, On the non-minimal character of the SMEFT, Phys. Lett. B 770 (2017) 108 [arXiv:1612.02040] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. de Blas, J.C. Criado, M. Pérez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    J. de Blas, O. Eberhardt and C. Krause, Current and future constraints on Higgs couplings in the nonlinear effective theory, arXiv:1803.00939 [INSPIRE].
  52. [52]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. de Blas, Electroweak limits on physics beyond the Standard Model, EPJ Web Conf. 60 (2013) 19008 [arXiv:1307.6173] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    Q.-H. Cao, F.P. Huang, K.-P. Xie and X. Zhang, Testing the electroweak phase transition in scalar extension models at lepton colliders, Chin. Phys. C 42 (2018) 023103 [arXiv:1708.04737] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, JHEP 02 (2017) 094 [arXiv:1506.00623] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    R. Feger and T.W. Kephart, LieART — a Mathematica application for Lie algebras and representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    E. Witten, Mass hierarchies in supersymmetric theories, Phys. Lett. B 105 (1981) 267 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    G.R. Dvali, Why is the Higgs doublet light?, Phys. Lett. B 324 (1994) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    H. Georgi, An almost realistic gauge hierarchy, Phys. Lett. B 108 (1982) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally massless Higgs doublets in supersymmetric SU(5), Phys. Lett. B 115 (1982) 380 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K.S. Babu, I. Gogoladze and Z. Tavartkiladze, Missing partner mechanism in SO(10) grand unification, Phys. Lett. B 650 (2007) 49 [hep-ph/0612315] [INSPIRE].
  67. [67]
    K.S. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242] [INSPIRE].
  68. [68]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].ADSGoogle Scholar
  69. [69]
    K. Ghosh, S. Jana and S. Nandi, Neutrino mass generation and 750 GeV diphoton excess via photon-photon fusion at the Large Hadron Collider, arXiv:1607.01910 [INSPIRE].
  70. [70]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  71. [71]
    H.E. Logan and V. Rentala, All the generalized Georgi-Machacek models, Phys. Rev. D 92 (2015) 075011 [arXiv:1502.01275] [INSPIRE].ADSGoogle Scholar
  72. [72]
    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  75. [75]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  76. [76]
    D. Dercks, N. Desai, J.S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, CheckMATE 2: from the model to the limit, Comput. Phys. Commun. 221 (2017) 383 [arXiv:1611.09856] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    ATLAS collaboration, Search for supersymmetry with two and three leptons and missing transverse momentum in the final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-096, CERN, Geneva, Switzerland, (2016).
  78. [78]
    J. Alcaide, M. Chala and A. Santamaria, LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model, Phys. Lett. B 779 (2018) 107 [arXiv:1710.05885] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
  80. [80]
    J. Bagger et al., The strongly interacting W W system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [INSPIRE].
  81. [81]
    V. Koulovassilopoulos and R.S. Chivukula, The phenomenology of a nonstandard Higgs boson in W L W L scattering, Phys. Rev. D 50 (1994) 3218 [hep-ph/9312317] [INSPIRE].
  82. [82]
    C.P. Burgess, J. Matias and M. Pospelov, A Higgs or not a Higgs? What to do if you discover a new scalar particle, Int. J. Mod. Phys. A 17 (2002) 1841 [hep-ph/9912459] [INSPIRE].
  83. [83]
    L.-M. Wang and Q. Wang, Electroweak chiral Lagrangian for neutral Higgs boson, Chin. Phys. Lett. 25 (2008) 1984 [hep-ph/0605104] [INSPIRE].
  84. [84]
    B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].ADSGoogle Scholar
  85. [85]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R. Contino, The Higgs as a composite Nambu-Goldstone boson, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, U.S.A., 1-26 June 2009, World Scientific, Singapore, (2011), pg. 235 [arXiv:1005.4269] [INSPIRE].
  87. [87]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 04 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  88. [88]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The effective chiral Lagrangian for a light dynamical “Higgs particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
  89. [89]
    G. Buchalla and O. Catà, Effective theory of a dynamically broken electroweak Standard Model at NLO, JHEP 07 (2012) 101 [arXiv:1203.6510] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral Lagrangian with a light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
  91. [91]
    G. Buchalla, O. Catà and C. Krause, On the power counting in effective field theories, Phys. Lett. B 731 (2014) 80 [arXiv:1312.5624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].ADSGoogle Scholar
  93. [93]
    A.C. Longhitano, Low-energy impact of a heavy Higgs boson sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M.J. Herrero and E. Ruiz Morales, The electroweak chiral Lagrangian for the Standard Model with a heavy Higgs, Nucl. Phys. B 418 (1994) 431 [hep-ph/9308276] [INSPIRE].
  96. [96]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    G. Buchalla, O. Catà and C. Krause, A systematic approach to the SILH Lagrangian, Nucl. Phys. B 894 (2015) 602 [arXiv:1412.6356] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  98. [98]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  99. [99]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs data with nonlinear effective theory, Eur. Phys. J. C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  100. [100]
    V. Sanz and J. Setford, Composite Higgs models after run 2, Adv. High Energy Phys. 2018 (2018) 7168480 [arXiv:1703.10190] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  101. [101]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].CrossRefzbMATHGoogle Scholar
  102. [102]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Comment on “analysis of general power counting rules in effective field theory”, arXiv:1603.03062 [INSPIRE].
  103. [103]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  104. [104]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Standard Model extended by a heavy singlet: linear vs. nonlinear EFT, Nucl. Phys. B 917 (2017) 209 [arXiv:1608.03564] [INSPIRE].
  105. [105]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Note on anomalous Higgs-boson couplings in effective field theory, Phys. Lett. B 750 (2015) 298 [arXiv:1504.01707] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs inflation and naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  107. [107]
    G. Passarino and M. Trott, The Standard Model effective field theory and next to leading order, arXiv:1610.08356 [INSPIRE].
  108. [108]
    R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD corrections to Higgs pair production including dimension-6 operators, JHEP 09 (2015) 092 [arXiv:1504.06577] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Particle Physics Phenomenology, Physics DepartmentDurham UniversityDurhamU.K.
  2. 2.IFIC, Universitat de València-CSICValènciaSpain
  3. 3.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.
  4. 4.Albert Einstein Center, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  5. 5.Faculty of Science and TechnologyUniversity of StavangerStavangerNorway

Personalised recommendations