Skip to main content
Log in

Effective theory of a dynamically broken electroweak Standard Model at NLO

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the Standard Model as an effective theory at the weak scale v of a generic new strong interaction that dynamically breaks electroweak symmetry at the energy scale Λ ~ (few) TeV. Assuming only the minimal field content with the Standard Model fermions and gauge bosons, but without a light Higgs particle, we construct the complete Lagrangian through next-to-leading order, that is, including terms of order v 2 /Λ2. The systematics behind this expansion is clarified. Although similar to chiral perturbation theory, it is not governed by the dimension of operators alone, but depends in an essential way on the loop expansion. Power-counting formulas are derived that indicate the classes of operators required at the next-to-leading order. The complete set of operators at leading and next-to-leading order is then listed, based on the restrictions implied by the Standard Model gauge symmetries. We recover the well-known operators discussed in the literature in connection with the electroweak chiral Lagrangian and in similar contexts, but we collect a complete and systematic list of all terms through order v 2 /Λ2. This includes some operators not discussed in explicit terms before. We also show that a few of the previously considered operators can be eliminated via the equations of motion. As another important result we confirm the known list of dimension-6 operators in the Standard Model with an elementary Higgs doublet, essentially as a special case of our scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    ADS  Google Scholar 

  2. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  3. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Contino, The Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [INSPIRE].

  5. R. Contino, New physics at the LHC: strong versus weak symmetry breaking, Nuovo Cim. C32N3-4 (2009) 11 [arXiv:0908.3578] [INSPIRE].

    Google Scholar 

  6. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    ADS  Google Scholar 

  7. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  8. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the Standard Model Higgs boson in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  9. T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].

    ADS  Google Scholar 

  10. S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    ADS  Google Scholar 

  11. A.C. Longhitano, Heavy Higgs bosons in the Weinberg-Salam model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].

    ADS  Google Scholar 

  12. A.C. Longhitano, Low-energy impact of a heavy Higgs boson sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Appelquist and G.-H. Wu, The electroweak chiral Lagrangian and new precision measurements, Phys. Rev. D 48 (1993) 3235 [hep-ph/9304240] [INSPIRE].

    ADS  Google Scholar 

  14. T. Appelquist, M.J. Bowick, E. Cohler and A.I. Hauser, The breaking of isospin symmetry in theories with a dynamical Higgs mechanism, Phys. Rev. D 31 (1985) 1676 [INSPIRE].

    ADS  Google Scholar 

  15. A.I. Hauser, All masses, great and small, in the electroweak interactions, Ph.D. Thesis, University of Yale, New Haven U.S.A. (1985).

  16. R. Peccei and X. Zhang, Dynamical symmetry breaking and universality breakdown, Nucl. Phys. B 337 (1990) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Bagan, D. Espriu and J. Manzano, The effective electroweak chiral Lagrangian: the matter sector, Phys. Rev. D 60 (1999) 114035 [hep-ph/9809237] [INSPIRE].

    ADS  Google Scholar 

  18. J.A. Manzano Flecha, The electroweak matter sector from an effective theory perspective, hep-ph/0208068 [INSPIRE].

  19. A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].

    ADS  Google Scholar 

  20. A.F. Falk, M.E. Luke and E.H. Simmons, Chiral Lagrangians and precision measurements of triple gauge boson vertices at hadron colliders, Nucl. Phys. B 365 (1991) 523 [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. De Rujula, M. Gavela, P. Hernández and E. Masso, The selfcouplings of vector bosons: does LEP-1 obviate LEP-2?, Nucl. Phys. B 384 (1992) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking sector of the Standard Model, Nucl. Phys. B 373 (1992) 117 [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Dawson and G. Valencia, Signals for parity violation in the electroweak symmetry breaking sector, Phys. Rev. D 49 (1994) 2188 [hep-ph/9308248] [INSPIRE].

    ADS  Google Scholar 

  24. P. Hernández and F. Vegas, One loop effects of nonstandard triple gauge boson vertices, Phys. Lett. B 307 (1993) 116 [hep-ph/9212229] [INSPIRE].

    ADS  Google Scholar 

  25. C. Burgess and D. London, On anomalous gauge boson couplings and loop calculations, Phys. Rev. Lett. 69 (1992) 3428 [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Nyffeler and A. Schenk, The electroweak chiral Lagrangian reanalyzed, Phys. Rev. D 62 (2000) 113006 [hep-ph/9907294] [INSPIRE].

    ADS  Google Scholar 

  27. C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev. D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].

    ADS  Google Scholar 

  28. S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  31. M.J. Herrero and E. Ruiz Morales, The electroweak chiral Lagrangian for the Standard Model with a heavy Higgs, Nucl. Phys. B 418 (1994) 431 [hep-ph/9308276] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  33. R.S. Chivukula, Lectures on technicolor and compositeness, hep-ph/0011264 [INSPIRE].

  34. C. Arzt, M. Einhorn and J. Wudka, Patterns of deviation from the Standard Model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].

    Article  ADS  Google Scholar 

  35. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  36. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  38. F. Wilczek and A. Zee, Operator analysis of nucleon decay, Phys. Rev. Lett. 43 (1979) 1571 [INSPIRE].

    Article  ADS  Google Scholar 

  39. L. Abbott and M.B. Wise, The effective Hamiltonian for nucleon decay, Phys. Rev. D 22 (1980) 2208 [INSPIRE].

    ADS  Google Scholar 

  40. J. Hirn and J. Stern, Lepton-number violation and right-handed neutrinos in Higgs-less effective theories, Phys. Rev. D 73 (2006) 056001 [hep-ph/0504277] [INSPIRE].

    ADS  Google Scholar 

  41. J.F. Donoghue, E. Golowich and B.R. Holstein, Dynamics of the Standard Model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 (1992) 1 [INSPIRE].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Buchalla.

Additional information

ArXiv ePrint: 1203.6510

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchalla, G., Catà, O. Effective theory of a dynamically broken electroweak Standard Model at NLO. J. High Energ. Phys. 2012, 101 (2012). https://doi.org/10.1007/JHEP07(2012)101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)101

Keywords

Navigation